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INTRODUCTION

This document was sponsored by the LFASE program, a borehole seismometer

study of Deep Sea Drilling Program (DSDP) Site 418. This compilation was completed

prior to LFASE sponsored cruises to Site 418 to assist scientists, engineers, and

administrators in final planning of the experiment. We had four objectives: (1) describe

basement rock, sediments, seafloor and ocean environment at Site 418, (2) provide a

bibliography of published data on Site 418, (3) present previously unpublished scientific

results from the borehole seismometer experiments conducted on DSDP leg 52 and Ocean

Drilling Program (ODP) Leg 102, and (4) summarize knowledge on the condition of the re-

entry cone, bottom hole assembly, and hole.

The history of investigation at Site 417/418 is short despite the concerted drilling

effort during DSDP. JOIDES planned DSDP Leg 5Ito drill ocean floor south of Bermuda

near 30*N. Delays in the D/V CHALLENGER schedule early in 1976 postponed Leg 51

departure to November. The JOIDES planning committee moved the site south by 500 nmi

to avoid poor weather. The first survey cruise, other than sporadic ship transits (charted in

Rabinowitz et al., 1980), was made in September, 1976, by the USNS LYNCH (Hoskins

and Groman, 1976). Underway geophysics data obtained on this cruise were used for site

selection on DSDP Legs 51, 52, and 53 between November 1976, and April 1977 (Table

1; Donnelly et al., 1980). In May 1977, the R/V ROBERT D. CONRAD returned to Site

417 to do a bottom hydrophone survey (Bryan, 1980). The RNV ATLANTIS 11 visited

Sites 417 and 418 in February, 1978, to conduct a more extensive bottom hydrophone

survey (Purdy et al., 1980) and to measure heat flow (Galson and Von Herzen, 1981).

Hole 418A was re-entered in March 1985 on ODP Leg 102 to make borehole geophysical

measurements (Salisbury et al., 1986). Leg 102 did not attempt to drill in Hole 418A.

In drilling Sites 417/418, JOIDES sought to establish a reentry hole which could be

extended, by multiple drilling ship legs if necessary, through seismic layer 2 into layer 3.

The objective was to sample crust formed during the Cretaceous along a tectonic flow line
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through boreholes already established on the mid-Atlantic Ridge. JOIDES targeted

magnetic anomaly MO, the youngest anomaly bounding the Cretaceous magnetic quiet

zone, in order to date the anomaly and to provide firm tectonic control (Figure 1).

GENERAL INFORMATION

Location

Sites 417 and 418 are located in about 5500 m of water on the extreme

southwestward edge of the Bermuda Rise just north of the Vema Gap connecting the

Hatteras and Nares abyssal plains (Figure 2). Regionally, bathymetry varies up to ±200 m

due largely to changes in basement relief (Hoskins and Groman, 1976; Rabinowitz et al.,

1980). Near the drill sites, the seafloor slopes gently westward (Senske and Stephen,

1988; Figure 3). Tectonically, Site 417 lies in the middle of the MO magnetic block,

whereas Site 418 lies on the eastern edge of the MO block (Figure 1; 417 Site Report,

Figure 4, and 418 Site Report, Figure 3, in Donnelly et al., 1980; Rabinowitz et al., 1980).

Age

Recent revisions to the geologic time scale have made the age of the crust at Sites

417 and 418 problematic. Clearly, the sites are located on magnetic anomaly MO and the

oldest sediments at both sites is Lower Aptian (Donnelly et al., 1980). Based on these

dara, the Larson and Hilde (1975) time scale gives an age of 108-110 Ma, whereas more

recent time scales of Harland et al. (1982) and Kent and Gradstein (1985) increase the age

by -10 Ma to 118-120 Ma. This latter estimate conflicts with the best isotopic age

estimates on basalt samples from 417 and 418. Storzer and Selo (1980) used fission track

dating on 17 basalt glass samples from Holes 417D and 418A to obtain an age of 108.3

±1.3 Ma. Richardson et al. (1980) used Rb-Sr dating of vein-filling alteration minerals to

obtain ages of 108 ±3 Ma for Hole 417A and 108 ± 17 Ma for Hole 418D. Two less well

constrained dating methods gave a 4Ar-39Ar age of about 120 Ma on one basalt sample

from 417D (Ozima et al, 1980) and an age of 120 ±5 Ma for 417A and 418A vein calcites



7

Figure 1. Location of Sites 417 and 418 with respect to tectonic

features of the western North Atlantic. Anomaly and

fracture zone positions from Klitgord and Schouten (1986).
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Figure 2. Location of Sites 417 and 418 with respect to physiographic

provinces of Emery and Uchupi (1984). From Senske and

Stephen (1988).
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Figure 3. Bathymetry of Sites 417 and 418 compiled from well-navigated
echo-sounding data;

Bathymnetry of DSDP Sites 417 and 418
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based on their 87Sr/86 Sr ratio and variation in seawater strontium ratio with time

(Richardson et al. 1980).

The paleo-spreading rate is less controversial because Kent and Gradstein (1985)

applied a uniform timeshift to the early Mesozoic magnetic anomalies. Based on the

LYNCH survey, M. Carle (in Hoskins and Groman, 1976) estimated the MO-MI half-rate

as 1.80±0.05 cm/yr and the MO-M4 half-rate as 1.27±+0.01 cm/yr. Magnetic anomalies

strike -N25°E.

Crustal Structure

Most direct and indirect evidence indicates that sites 417 and 418 were drilled in

ocean crust that is typical of Mesozoic crust in the North Atlantic (Flower and Robinson,

1981b). Galson and Von Herzen (1981) show that the range of basement depths near these

sites brackets the depth-age curve derived by exponential approximation to the plate cooling

model of Parsons and Sclater (1977). Figure 4 shows that upper crustal compressional

wave velocities at Sites 417 and 418 do not differ significantly from a well-constrained

refraction velocity profile obtained by Purdy (1983) on 140 Ma old crust in the western

North Atlantic. Basaltic pillow lavas, massive flow units, and dikes sampled by drilling at

Sites 417 and 418 are similar to rock sequences sampled by other deep drilling holes

(Robinson et al., 1980; Flower and Robinson, 1981b; Bryan and Frey, 1986). A well

constrained velocity profile (Figure 5) from expanding-spread profile (ESP) 5 shot on

anomaly MO (Figure 6) during the North Atlantic transect (NAT) indicates that crustal

thickness (7.8 km) is similar to crustal thicknesses between fracture zones elsewhere along

the NAT line and to 140 Ma old crust in the western North Atlantic (NAT Study Group,

1985; Mutter et al., 1985; Mithal, 1986). This profile, however, indicates an 2.9 km thick

low velocity zone at the base of layer 3 not observed in ESP data elsewhere along the NAT

line or in more conventional refraction data (Figure 5; Purdy, 1983; White, 1984: Purdy

and Ewing, 1986). At this time, it is uncertain whether the lower crust at ESP 5 is unusual
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Figure 4. Compressional velocities form tau-zeta in version of
oblique seismic experiment travel times for Holes
417D (Stephen and Harding, 1983) and 418A (Swift and
Stephen, in press). Also shown are full crustal velocity
profiles from ESP 5 of the NAT (Mithal, 1986) and from
Purdy's (1983) study of 140 Ma crust.
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Poisson's ratio from analysis of ESP 5 collected on the
NAT. Data from Mithal (1986).
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Figure 6. Trackline chart showing location of NAT and ESP 5

with respect to Sites 417/418. Note also the location

of the zero-offset fracture zone labeled "East".

Chart from Mutter et al. (1985). Fracture zone locations

from Schouten and Klitgord (1977).
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or whether the quality of refraction data elsewhere has simply been insufficient to resolve

low-velocity zones within layer 3.

The nearest fracture zones, mapped on the basis of magnetic anomaly offsets, are

located 37 km to the north-northeast of Site 418 and 60 km to the south-southwest

(Figure 7; Hoskins and Groman, 1976; Rabinowitz et al., 1980). The length of crust

between these two fracture zones is twice the length observed in regions of Mesozoic crust

mapped with closely spaced aeromagnetic lines (Schouten and Klitgord, 1982). The

possibility arises that a zero-offset fracture zone with anomalous crustal structure (Schouten

and White, 1980) exists 10-13 km south of Site 418. Schouten and Klitgord (1977)

mapped such a feature and labeled it the "East" Fracture Zone (Figure 6). Based on limited

depth-to-basement data, Senske and Stephen (1988) proposed a fracture zone lying 12.5

km north-northeast of Site 418.

Basement occurs at -5800 m depth with variations up to ±300 m in troughs and

ridges (Figure 8; Senske and Stephen, 1988). Larger basement features tend to be aligned

parallel or perpendicular to the trend of magnetic anomalies, N 25°E. Basement maps are

not available for larger geographic scales. It is clear from the reflection profiles in

Rabinowitz et al. (1980) that relief exceeds ±500 m within 50 km of Site 418.

Both sites 417 and 418 are located on the flanks of modest basement highs (Figure

8). The difference in depth to basement of 146 m between Holes 417A and 417D located

-450 m apart (Table 1) demonstrates the presence of steep basement slopes. This high

spatial frequency relief cannot be resolved by available seismic reflection data and, thus, is

not apparent in Figure 8.

The P-wave velocity profile at 418A does not differ significantly at the 95%

confidence level from that at 417D located -7.5 km away (Swift and Stephen, in press; see

section below on borehole seismic experiments). Seismic velocities do vary laterally at

shorter length scales. A travel time anomaly indicates that seismic velocity in the upper 0.5
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Figure 8. Depth to basement (meters) from Senske and Stephen (1988).
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km of basement increases laterally northward out to 5 km shooting range. We discuss

these results in greater detail in the section on borehole seismometer studies.

Sedimentary Development

Sediment thickness near the drill sites averages -300 m but ranges from less than

100 m on basement ridges to -500 m in basement lows (Figure 9; Senske and Stephen

1988). Sediment lithologies recovered a: the four holes drilled to basement (Figure 10)

may be divided into four facies: (1) a basal carbonate-rich facies of early Aptian age; (2) a

black shale facies of Aptian-Albian age; (3) clay facies which lasted from Late Cretaceous

to present and was briefly interrupted in the middle Eocene by deposition of (4) siliceous

rich clay. From just prior to the Aptian to late Aptian-Albian, when Sites 417 and 418 were

still near the ridge crest, the carbonate compensation depth rose from below 5000 m to

about 3000 m (Arthur and Dean, 1986). Only the clay and siliceous clay facies were

recovered on the basement high drilled at 417A. Currents probably swept early pelagic

carbonate sediments off basement highs into lows (Tucholke and Vogt, 1979). The basal

sedimentary sections within basement lows (Figure 8) are likely to be predominantly

carbonates.

GEOPHYSICAL STUDIES

Magnetics

Hoskins and Groman (1976) collected the only systematically surveyed magnetic

data in the area of Sites 417/418. Rabinowitz et al. (1980) supplemented these lines with

magnetic data collected on publically available transits of the region and published the

magnetic source block interpretation in Figure 7. On larger scales, the most recent

published compilations of marine magnetic anomalies are those in Schouten and Klitgord

(1977) and Klitgord and Schouten (1986).
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Figure 9. Total sediment thickness chart from Senske and Stephen (1988).
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Figure 10. Sediment lithology sections at holes which penetrated

to basement during DSDP Legs 51, 52, and 53.

Compiled from Donnelly et al. (1980).
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Gravity

No gravity data were collected during detailed surveys of Sites 417/418. Basin-

wide compilations of gravity data indicate that the free-air gravity anomaly at Sites 417 and

418 is -20 to -30 mgals and has no steep gradients (Bowin et al., 1982; Rabinowitz and

Jung, 1986).

Heat Flow

In 1978, Galson and Von Herzen (1981) made a detailed heat flow survey of Sites

417 and 418 using a multi-penetration "pogo" technique. The mean and standard deviation

of all values are 1.13 HFU (g cal/cm 2s) (47.3 m W/m2) and 0.05 HFU (2.1 m W/m2),

respectively. Using heat flow modeling, Galson and Von Herzen (1981) show that

refractive effects of basement topography can account for some of the variability.

Reflection Seismics

Table 2 lists the National Geophysical Data Center (NGDC) accounting of ships

which collected vertical incidence seismic reflection data within the area 24"-26"N, 67°-

69°W. Rabinowitz et al. (1980) show most profiles collected prior to and during drilling.

In 1981, a two-ship common depth profile was shot over Sites 417/418 as part of

the North Atlantic Transect (NAT) (NAT Study Group, 1985; Mutter et al. 1985).

Figure 6 shows the profile location. Figure 11 from Mutter et al. (1985) reproduces the

portion of the processed profile nearest Sites 417/418.

During ODP Leg 102 operations at Hole 418A, the R/V FRED MOORE collected

profiles with both five-channel and one-channel streamers in a grid with 2 km line spacing.

The FRED MOORE used an 80 in3 water gun as a source. The ship tracklines and profiles

are presented in Auroux and Stephen (1986). Senske and Stephen (1988) correlated the

profiles to borehole stratigraphy (Figure 12) and mapped depth to seafloor (Figure 3),

prominent reflectors (Figure 13), and top of basement (Figure 8).

Vertical-incidence profiles using a near-bottom, towed receiver were collected close

to the drillsites on two occasions. In 1977, Bryan (1980) showed the feasibility of the
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Figure 12.. Correlation between reflectors and lithology at
Holes 417D and 418A. From Senske and Stephen (1988).
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Figure 12 continued.
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Figure 12 continued.
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Figure 13a. Depth to Miocene/Oligocene reflector. From Senske and Stephen (1988)
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Figure 13b. Depth to Middle Eocenie. From Senske and Stephen (1988).
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Figure 13c. Depth to Albian/Cenomanian reflector. From Senske add Stephen (1988)
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method by collecting a 4.5 km analog profile located about 3 km west of Site 417. In

1978, Purdy et al. (1980) collected several profiles in the region, but only a 7.5 km long

east-west profile across Site 417 was of sufficient quality to publish.

Three groups have published correlations between seismic stratigraphy and

borehole sedimentary section. Donnelly et al. (1980) presented correlations as part of their

site descriptions. Senske and Stephen (1988) correlated stratigraphy at Hole 418A to

single-channel digital profiles (Figure 12). Carlson et al. (1988b) used the gamma ray log

collected on ODP Leg 102 to make detailed correlations between Hole 418A stratigraphy

and an analog profile. The seismic stratigraphy of the region has been discussed from a

basin-wide perspective by Tucholke (1979), Tucholke and Mountain (1979), and Mountain

et al. (1985).

Refraction seismicns

Refraction data have been collected at Sites 417/418 using sonobuoy receivers,

borehole seismometers, and expanding-spread two-ship geometry. Sonobuoy refraction

solutions from Lamont-Doherty Geological Observatory are cited by Donnelly et al. (1980;

Part 1, p. 28), but the solutions have not been published. A sonobuoy was deployed from

the SEDCO/BP 471 during ODP Leg 102 shooting, but the buoy drifted too fast to yield

reliable velocity estimates.

Borehole seismic experiments were run on DSDP Leg 52 in Hole 417D (Stephen et

al. 1980a,b) and on ODP Leg 102 in Hole 418 A (Swift et al., 1988; Swift and Stephen, in

press). These results are discussed later in the section on borehole seismic experiments.

During the NAT, ESP 5 was shot on magnetic anomaly MO near DSDP Sites

417/418 (Figure 6, NAT Study Group, 1985; Mithal, 1986). The velocity solution (Figure

5; Table 3) shows a crustal thickness similar to that between fracture zones. At the base of

the crust, Mithal found an unusual, well-determined low-velocity zone. This layer has a

uniform velocity of 6.5 km/s and a thickness of 2.9 km. This layer is capped by velocity

of 7.1 km/s and is underlain by the Moho velocity gradient to upper mantle velocities.
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Table 3. P and S velocities determined for NAT ESP 5

by Mithal (1986)

MODEL NE5B2

LAYER DZ ZSUM VPTOP VPBOT VSTOP VSBOT

(KM) (KM) (KM/S) (KM/S) (KM/S) (KM/S)

1 5.587 5.587 1.510 1.510

2 .068 5.655 1.800 1.800

3 .090 5.745 1.900 1.900

4 .132 5.877 2.100 2.300

5 1.346 7.223 5.050 6.160 2.661 3.282

6 .415 7.638 6.360 6.400 3.590 3.613

7 2.868 10.506 6.400 7.140 3.637 4.050

8 3.055 13.561 6.500 6.500 3.742 3.742

9 .889 14.450 7.770 8.100 4.421 4.605

10 8.200 4.7
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BOREHOLE SEDIMENT STUDIES

Lithostratig'aphy

Detailed descriptions of sediment lithology and shipboard chemical analyses are

published in the DSDP site reports (Donnelly et al., 1980, Part 1). Sediment recovery was

generally poor (33-58%, Table 1). Figure 10 shows sediment sections in the four holes

drilled to basement. Tables 4 and 5 summarize the lithologic units assigned by shipboard

scientists.

Mineralogy and Chemistry

Sediments at the two sites are 65-90% clay minerals except in the Aptian chert and

carbonate interbeds overlying basement (Mann and Muller, 1980; Rusinov and Kelts,

1980). The balance is 5-15% quartz with trace amounts of feldspar, pyroxene, and

authigenic minerals. Smectite is the most common clay mineral, with illite being more

common at the top and bottom of the sections. Chemical analyses of sediments reveal a late

Cenozoic rhyolitic ash bed at -40 m depth in Hole 417A, similar in composition to Eocene

age ash beds in Holes 417D and 418A (Donnelly, 1980). The basal sediments are enriched

in iron, magnesium, and potassium. Organic matter in the Early Cretaceous black clays

and claystones has both a marine and continental origin (Deroo et al., 1980). Organic

carbon contents of these basal sediments range from 1-10%. Borella and Adelsek (1980)

suggest that manganese-enriched rhodochrosite minerals and Mn-oxide grains formed

in situ from mobile Mn. Gieskes and Reese (1980) attribute differences between Sites 417

and 418 in the vertical gradient of calcium in interstitial water to diffusion from basement

and to differences in basement porosity related to different basalt type.

Micropaleontologv

Donnelly et al. (1980) report the results of shipboard micropaleontology studies.

At both sites, foraminifera are common in the uppermost sediment core and lowermost

carbonate-rich beds overlying basement but are absent in most of the remaining section

(Miles and Orr, 1980). Radiolarians and other siliceous microfossils are common,



32

Table 4. From Donnelly et al. (1980)

Sedimentary Lithologic Units From Site 417

Chronostraugraphic Hole, 417 and 41 lioic' 41 'K ."'d 4 'D
Unit Litholog.',Comments Unit Depth (in Thickaess tin, Core Section Inter~.l iDepth (min Thickneislml &.m r - Sertion ln!ersj

I brown pelagic clay with Earl, Quaternar, 0-85 8 5 417-1. 417A-I. 417B-1 0-95 9 5 417B-1 471) I
Nannofossil ooze horizons

11 Yellow brown to pale brown Middle Miocene to 8.5-105 7 97.2 417A-2 to 417A-12-2. ,ohcd 1- -25
pelagic clai, Includes some i0 late Eocene 7u cm
blue ash

Ill Dark brown zeolitic clay 1 1057-122.5 16.8 b 417A-12-2. 
7
0cm to 1 2"U- 14 41 7D-3

417A-13-3 1360
IV Dark brown radiolarian Middle Eocene 122.5-160.5 38 417A-13-4 to 41 7A-18-7 1136.0- 42 417D-4 i,,a,hed 144 5

ooze to d.a) 178.0 1" 192 tim
IVa Zeohiic 122.5-136.5 417A-13-4 to 417A-15-3
IVb Non-zeohtic 136.5-151 0 417A-15-4 to417A-16. CC
IVc Zeolitic 151-0-1605 417A-17

V Multicolored zeolite cla) Late Cretaceous 160.5-149.5 39 417A-18-1 to 417A-21. 1780- 101 5 41 "D f I t,- 41 '[) .1
CC 279.5 6,. m

Va Pale and dark yellow- 160.5-179 5 19 417A-18-1 to 417A-19. 178.0- 34 4177D-6-1 tu 417D-h CC
brown, slightly zeolitic CC 212.0
Vb Yellow-browns and 179 5-199.5a 20 417A-20-1 to 417A-22-1. 212-2750 63 417D-8. CC to 41 '1)-
pale green zeolite-rich 100 cm 14-4
Vc Transition Basalt Rubbleb 275.0- 4 5 417D-14-5 to 417D-15-2.

279,5 60cm
VI Green to black organic Earl) Cenomanian 279.5- 46 3 417D- 15-2.60,m tm

claystone marl and nanno- to Albian 325.8 4170-19 CC
fossil chalk including

radiolartan sands. pynte,
chert, dolomite, and
phosphate

VII Cyclic radiolarian sand to Early Albian to 325.0- 13.6 41713-20-1 tol 'D-21-3.
marl to claystone late aptian 338.6 140cm
Vila Pale to dark brown 11.3 4177D-20-1 to 41 "1)-2 -2
and pale green 60 cm
Vllb Green and black with 2.3 417D-21-2. bl'-m
nannofossd chalk and chert 1 4171-21-3 I

4
0cm

VIII Olive-gray, clayey nanno- Early Aptian 338.6- 09 417D-21-3. 40cm rtn
fossil chalk 3395a 41

7
D-21-4.60,cm

( 3 43b)

IX Glassy basalt with Below
interpillow limestone 343c I

bBasement according to postton in core of the first basalt encountered.
Irilling in Hole 417A encountered altered pillow basalt basement Driller's records indicate a basement contact at 208 meters sub-bottom The top of basalt Cores41 17A-23
and 24 contains, respectively. 40 cm and 20 cm of a drdl breccia with basalt rubble, sand, and overlying clay
Coring indicated basalt at 339.3 meters sub-bottom and driller's records at 343 meters. Checking with the logging tools. however, showed the sediment bas.lt interlate Iocated
at 340 meters sub-bottom.
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Table 5. From Donnelly et al. (1980)

Sedimentry Lithologic Units - Site 418

Unit Holes 418 and 418A Hole 418B

Sub- Depth Thickness Depth Thickness
nLni Ljthology Chronositatigaphy (ml (in) CoTe-Section, Interval 1m)l (mr Core-Section. interval

I Brown pelagic clay with Quaternary 0.0-6.Oa 6.0 418-1 0-16.3 -16.3 418B-I
nannofossil horizons 418B-:
1IOYR 4/2)

II Pelagic clay Miocene/Obhocene 111.0-151.2b 40.20) 418A-1 to 418A-2 16.3-139.1 122.8 418B-3-1 to 41B-15. CC
Yellow brown to pale ('1 or or
yellos Pgay, grayish 6.0-151.2 145.2 to base
orange 0 OYR 7/4) to light of Core I
olive brown (2.5Y 514)

Ila Yellow brown 16.3-73 3 5? 4181-3-1 to 4188-6. CC
lib Pale orange 73.3-1391 658 4188-9-1 to 418B-I5.,C(
Ill Dark gray brown pelagic clay 151.2-159.3 -8,1 418A-5-2 to 139.1-158 18F 9 418B-16-1 to 418B-I". CC

Some pale zeohtic interbeds 4 ]A-6-1
IV Dark gray brown to red brown Middle Eocene 159 3- 77.5 -18.2 418A-6-1 to 154.0-! 77.2 i 19.2 418B-18-1 to 4188-19.CC

pelagic clay with radiolarians 418A-7. CC
(2,4Y 412Y 4

Va Dark gray brown to red brown 177.5-206, -290 418A-7.CC to 177.2-196.3 19 1 418B-19.(( t,
pelagic clay (SYR 2 5/2) 418A-8. CC 4 418b-2 1. CC

Vb Multicolored zeobte clay Upper Cretaceous -c 196.3-236 39 4188-22-1 to4t8B-26-1.
Pale orange, brown to 

9
0cm

pale green
VI Green. black. l[ht to olve Albtan to 23 4.5- 2 9 1.Od -56.4 418A-9 to 418A-1 I, 236-291.6 55.6 418B-26,C( to

gray. blue preen clystiones. Cenomanian CC 418B-32-1. 20 crn
marlIs nannofossil chalks and
radmolarsan sands including
pyrite. chert and organics
(black-clay facites)

VII Pale to dark red brown, pink Upper Aptian to 291.5-324.0e -32,5 418A-12-I to 291.6-319.5e i 281 41 B32-l,30cmto
and p.1. green Albian 418A-15-1 418B-34-1, 60 1c•
Radiolarian claystones. cbys.
marls and nannofoisil chalks
and black to green clay
including chert

Vlla Pale to dark red brown Upper Apuian to 291 5-3033 11.8 418A-12-1 to 291.6-301.6 10 418B-32-1.30 crn to
nannofossil chalks to lower Albian 418A-I 3-2. 80 cm 418B-33-1. 60 cm
radiolartan marls

Viil, Black and green claystones1 303.3-320.(0 167 418A-13-2. 80 cm to 30l.6-319.5e 18.1 418-33-1. 60 cm to

1 41SA.4.CC (311.11 49.5) 4188-34-160 cm
VIII Gray nannofomil chalk Lcwer Aptian 32 3 .8-3 2 4 .Oe 20cm recovered 418A-1 5-1,0-20 cm Not

or ' above basalt r.covered
(320.0-320 '•

IX Basalt with interpillo.
limestone _

a Core I at Hole 418: no coring until I I I meters it Hole 41 8A
bNo coring prior to I I I meters.
CWashed intervals = 177.5-196.5 - 19 meters; 206-234 5 - 28 5 meters

dNashed after 244.0 to 272.5 - 28.5 meters
Based on driller's depth to basalt
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moderately well-preserved, and suitable for biostratigraphic zonation only in the Eocene

siliceous oozes (Bukry, 1980). Calcareous nannofossils are absent throughout except in

the uppermost core and in the basal Cretaceous sediments (Gartner, 1980: Siesser, 1980).

According to nannofossil stratigraphy, holes 417D, 418A, and 418B all have the same

basement age of Early Aptian but have significantly different early- to rnid-Cretaceous

sequences. Pleistocene nannofossils were probably transported to this site via turbidity

currents. Ichthyolith stratigraphy in sections barren of other fossil groups suggests late

Cenozoic accumulation rates of 3-5 mm/1000 yrs (Kozarek and Orr, 1980). Most

palynomorphs of middle Cretaceous sediments are of marine origin (Hochuli and Kelts,

1980). At this time, phytoplankton assemblages underwent rapid, fundamental changes in

response to significant short-term changes in basinwide paleo-oceanography.

Physical Properties

Donnelly et al. (1980) present measurements made onboard ship of sedimentary

wet-bulk density, compressional wave velocity, shear strength, water content and porosity

(Figure 14). At Site 417, they concluded that drilling disturbance and removal of samples

from in-situ pressure-temperature conditions affected most samples. As a result, the only

reliable changes with depth are a shear strength gradient change at -70 m and impedance

contrasts at 280 m and 310 m depth in Hole 417D. Logging confirmed only the feature at

310 m (Salisbury et al., 1980a; see logging section below). Richards and Fager (1980)

made measurements onshore of engineering properties on sediments from the upper 140 m

of Hole 417A. At Site 418, Donnelly et al. (1980) concluded that the only significant

variations in physical properties were an increase in velocity and shear strength near 190 m

depth and an impedance change coincident with chert layers at 235 m depth. From the

latter, they predicted a prominent reflection -0.-1 sec above basement. During ODP

Leg 102 logging of Hole 418A, the only physical property log which gave satisfactory

results in the sediment section was the gamma ray neutron porosity (Shipboard Scientific

Party, 1986; Carlson et al., 1988b).
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IXOREHOLE BASEMENT STUDIES

Donnelly et al. (1980) present detailed descriptions of basement rock cored on

DSDP Legs 51, 52, and 53. Penetration was deeper than most other Atlantic boreholes

(417A - 206 m, 417D - 365.5 m, 418A - 544 m). Recovery rates were exceptionally high

averaging 62% in 417A, 75% in 417D, 72% in 418A (Table 1). Figure 15 schematically

shows basement lithostratigraphy for both sites. One of the remarkable results of drilling

these holes is the relative "freshness" of basement rock recovered at Holes 417D and 418A,

although some degree of low temperature alteration is pervasive. In particular, unaltered

basaltic glass was recovered. Study of these holes has greatly improved our understanding

of the petrology and chemistry of old Atlantic crust. Another remarkable result was the

high degree to which Hole 417A rocks, recovered from a basement high, were altered by

low-temperature reactions. These rocks are significant because they demonstrate lateral

variability in basalt chemistry and alteration processes in the crust, and because the change

in chemistry from fresh Hole 417D rocks to Hole 417A rocks can be used to estimate

fluxes of elements between crustal rocks and overlying seawater.

Lithostratigraphy

Below the sediment-basement contact the major rock types are pillow basalts,

massive flow basalts, and breccias. Sediment interbeds and intrusive dikes are minor

components. Tables 6-8 give depths to lithostratigraphic unit boundaries. Table 9 lists the

relative proportions of each lithology.

Pillows are probably flattened slightly with vertical thickness averaging -50 cm and

ranging from 10-150 cm (Robinson et al., 1980). Average pillow size is slightly lower at

Hole 417A. The outer 1-2 cm margin of pillows are glassy and cut by concentric fractures.

The phenocryst concentration within most pillows is uneven and variable. Thicknesses of

: ".low units (often with minor, inter-pillow breccia) range up to 65 m at Site 417 and
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Figure 15. Basement lithostratigraphy at the four holes which

penetrated basement. Compiled from Donnelly ct al. (1980).
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Table 6. From Donnelly et al. (1980)

Basement Lithologic Units, Hole 417A

Sample

Topa Basea Thickness Type Cooling Phenocryst Wore-Section.
Unit (ml (mI (m) Unit Assemblage Interval in cm)

IA 208.0 208.8 0.8 Pebbles Plag-Oliv 22 23-1, 80

lB 217.5 218.8 1.3 Pillow basalt Plag-Oliv 24-1, 0 to 24-t. 130
2A 218.8 220.1 1.3 Breccia Plag-Oliv 24-1. 130 to 24-2. 110

2B 220.1 237.2 17.2 Pillow basalt Plag-Oltv 24-2. 110 to 26-1, 75

3A 237.3 237,5 0.2 Breccia (thinli Plag-Oliv 26-1. 75 to 26-1, 95
38 237.5 238.8 1.3 Pillow basalt Plag-.Oliv 26-1, 95 to 26-2, 75
4 238.8 243.4 4.6 Breccia Plag-Oliv 26-2. 75 to 26-5. 85

(includes 0.5 m of basalt between 240,6-241.2 m in Core 26-3. 105 cm to 26-4. 15 cm)
5 243.4 255.5 12.1 Pillow basalt Plag.-OliV 26-5. 85 to 28-1, 0

6A 255.5 255.9 0.4 Breccia Plag-Oliv 28-1. 0 to 28-1, 40
6B 255.9 257.4 1.5 Pillow basalt Plag-Oliv 28-1. 40 to 28-2, 35
7 257.4 258.5 1.1 Breccia Plag-Oliv 28-2. 35 to 28-2, 150
8 258.5 274.5 16.0 Pillow basalt Plag-Oliv 28-3, 0 to 29-7, 45
9 274.5 277.2 2.7 Breccia Plag-Oliv 30-1, 0 to 30-2, 115

10 277.5 279.8 2.3 Pillow basalt Plag-Oliv 30-3. 0 to 30-4, 75
11 279.8 288.0 8.2 Breccia Plag-Oliv 30.4. 75 to 31-3. 100

(includes 1.0 m of basalt between 282.9-284.8 m in Cores 30-6, 90 to 31-1, 75)

12 288.0 298.8 10.8 Pillow basalt Plag-Oliv :t Cpx 31-3. 100 to 32-4, 80
13 298.8 306.1 7.3 Breccia Plag-Cpx-Oliv 32-4, 80 to 33-3, 50

(includes .7 m of basalt between 303.0-303.7 m in Core 33-1,0 cm to 33-1. 70 cm)
14 306.1 319.5 13.4 Pillow basalt Plag-Cpx-Oliv 33-3. 5 to 34-5, 100
15 . 319.5 322.7 3,2 Breccia Plag-Cpx-.Oliv 34-5, 100 to 35-1, 65
16A 322.7 353.6 30.9 Pillow basalt Plag-Cpx-Oliv 35-1, 65 to 38-5, 80
16B 353.5 364.3 10.8 Pillow basalt Plag-Cpx-Oliv 38-5. 80 to 40-1, 90
16C 364.3 379.7 15.4 Pillow basalt Plag-Cpx-Oliv 40-1. 90 to 42-1, 75
16D 379.7 385.6 5.9 Pillow basalt Plag-Cpx-Oliv 42-1, 75 to 42-5, 105
17A 385.6 385.7 0.1 Br.eccia Plag-Cpx-.Oliv 42-5, 105 to 42-5. 125
17B 385.7 389.9 4.2 Pillow basalt Plag-Cpx-Oliv 42-6. 0 to 43-2, 0
18A 389.9 394.7 4.8 Massive basalt Plag--Cpx-Oliv 43-2, 0 to 44-1. 25
18B 394.8 407.9 13.1 Massive basalt Plag-Cpx--Oliv 44-1, 25 to 46-1, 40

(includes thin veined unit in Core 44-1, 25 cm to 44-1,40 cm)

19 407.9 412.8 4.9 Breccia Plag-Cpx-Oliv 46-1, 40 to 46-4, 80

aDepths corrected for spacers.
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Table 7. From Donnelly et al. (1980)

Basement Lithologic Units, Hole 417D

Unit/ Topa Basea Thickness Type Cooling Phenocryst Sample
Sub-Unit (m) (m) (m) Unit Assemblage (Core-Section, Interval in cm)

IA 343 367.3 24.3 Pillow basalt Plag-Oliv 21CC, 46 to 27-1, 75
IB 367.3 384.8 17.5 Pillow basalt Plag-Oliv-(Cpx. 37-1. 75 to 28-7. 98
IC 384.8 407.5 22.7 Pillow basalt Plag-Oliv-(Cpx) 29-1. 0 to 31-3. 148
2 407.5 412.8 5.3 Pillow basalt Plag-Oliv-(Cpx) 31-4, 0 to 32-1, 66
3 412.8 435.4 22.6 Massive basalt Plag-Cpx-Oliv 32-1, 66 to 34-5, 112
4 435.4 488.4 53.0 Pillow basalt Plag-Oliv-Cpx 34-5, 112 to 42-3. 75
5 488.4 495.0 6.6 Pillow basalt Plag-Oliv-Cpx 42-3. 75 to 43-1. 127
6 495.0 500.6 5.6 Massive basalt Plag-Oliv-Cpx 43-1, 127 to 43-5, 127
7 500.6 538.0 37.4 Pillow basalt Plag-Oliv-Cpx 43-5. 127 to 47CC
8A 538.0 539.0 1.0 Massive basalt Plag-Cpx-Oliv 48-5, 0 to 48-7. 98
8B 539.0 562.5 23.5 Massive basalt Plag-Cpx-Oliv 49-1. 0 to 52-4. 27
9A 562.5 624.0 61.5 Pillow basalt Plag-Cpx-Oliv 52-4. 27 to 58-5, 28

and breccia
9B 624.0 533.0 9.0 Breccia Plag-Cpx-Oliv 59-1, 0 to 59-7. 37
9C 633.0 642.0 9.0 Breccia Plag-Cpx-Oliv 60-1, 0 to 61-1. 93
9D 642.0 665.8 23.8 Pillow basalt Plag-Oliv-(Cpx) 62-1, 0 to 64-4, 127

IOA 665.8 672.6 6.8 Massive basalt Plag-Ofiv 64-4. 127 to 65-3, 64
lOB 672.6 678.0 5.4 Massive basalt Plag-Oliv 65-3, 64 to 65-6, 92
11 678.0 687.0 9.0 Pillow basalt Plag-Oliv 66-1, 0 to 66-6. 76
12 687.0 694.1 7.1 Massive basalt Plag-Oliv 67-1, 0 to 67-6. 35
13 694.1 708.5 14.4 Massive basalt Plag-(Oliv) 67-6. 35 to 69-2, 38
14A Basalt dike Plag-Oliv-Cpx 68-1. 120 to 68-2. 55
14B Basalt dike Plag-Oliv-Cpx 68-4. 5 to 68-4. 49

aDepths corrected for spacers.
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Table 8. From Donnelly et al. (1980)

Basement Lithologic Units, Hole 418A, from Results of Legs 52 and 53

Topa Basea Thickness Type Cooling Phenocryst Intervals
Unit (m) IM) (m) Unit Assemblage (Core-Section. cm)

1 324.0 329.6 5.6 Pillow basalt Plag-tOliv) 15-1.20 to 16-1, 10
2A 329.6 331.7 2.1 Massive basalt Plag-lOliv) 16-1. 10 ti 16-2, 105
2B 331.7 339.0 7.3 Massive basalt Plag-(OlivI 16-2. 105 to 17-4, 150
2C 339.0 363.1 24.1 Massive basalt Plag-qOliv) 18-1.0 to 20-5, 81
2D 363.1 376.6 13.5 Massive basalt Plag-lOliv-jCpxJ 20-5, 81 to 24-1,57
3 376.6 383.3 6.7 Pillow basalt Plag-(Oliv)-[Cpx] 24-1.57 to 25-2.60
4 383.3 387.1 3.8 Massive basalt P'ia-1Oliv)-[CpxJ 25-2.60 to 26-2, 110
5 387 1 498.5 111.4 Pillow basalt and Pla2-tOliv)-[Cpx] 26-2. 110 to40-3,47

breccia
6A 498.5 510.5 12.0 Breccia Plag-Oliv-(SP)-ICpxj 41-1.0 to 42-2,150
6B 510.5 611.0 100.5 Pillow basalt Plag-Ohv-(Sp)-(Cpxl 42-3, 0 to 53-3, 150
7 611.0 629.2 18.2 Pillow basalt Plag-Oliv-Cpx 54-1.0 to 55-7.70
8A 629.2 632.9 3.7 Pillow basalt Plag-Oliv-Cpx 55-7, 70 to 56-3.45
8B 632.9 636.3 3.4 Massive(?) basalt Plag-Oliv-Cpx 56-3.45 to 56-5, 125
8C 636.3 671.8 35.5 Pillow basalt Plag-Oliv-Cpx 56-5, 125 to 60-4, 33
9 671.8 676.5 4.7 Massive, vesicular Plag 60-4, 33 to 60-6.66

basalt
10 676.5 686.0 9.5 Massive basalt Plag 61-1,0 to 61 bit, 95
11 686.0 695.5 9.5 Pillow basalt Plag-Cpx-Oliv 62-1,0 to 63-5, 119
12 695.5 698.2 2.7 Massive(?) basalt Plag-Cpx-Oliv 64-1,0 to 64-2. 122
13 698.2 786.5 88.3 Pillow basalt and Plag-Cpx-Oliv 64-2, 122 to 75-4, 150

breccia
14A 786.5 793.6 7.1 Massive basalt Plag-Cpx-Oliv 75-5,0 to 77-1,50
14B 793.6 821.5 27.9 Massive basalt Plag-Cpx-Oliv 77-1,50 to 79.7, 124
14C 821.5 859.8 38.3 Massive basalt Plag-Cpx-Oliv 80-1.0 to 86-1.25
15A -b - - Basalt dikes Plag-Oliv-Cpx 79-1,75 to 79-1, 110

79-2, 78 to 79-2. 105
79-3, 105 to 79-4, 95

15B - - - Basalt dikes Plag-Oliv 80-2. 117 to 80-3. 127
80-4.2 to 80-4. 42
80-4. 107 to 80-5, 110

16 859.8 868.0 8.2 Pillow basalt and Plag-Oliv-Cpx-Sp 86-1. 25 to 86-6. 55
breccia

a Depths corrected for spacers.
Undetermined.
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Table 9. From Robinson et al. (1980)

Lithologic Summary of Holes 417A, 417D, and 418A

Cored Recovered Relative Proportions
Thickness Thickness Percentage Cored Recovered

Lithology (m) (m) Recovery' ('%) (%)

Hole 417A
Pillowed basalt 138.63 92.05 66.4 67.3 71.8
Basalt breccia 37.26 24.74 66.4 18.1 19.3
Massive basalt 23.11 10.34 44.7 11.2 8.1
Basalt pebbles 7.0 1.05 15.0 3.4 0.8
Total 206.00 128.18 62.2 (av.) 100.0 100.0

Hole 417D
Pillowed basalt 253.0 179.11 70.8 69.2 67.8
Basalt breccia 20.5 18.80 91.7 5.6 7.1
Massive basalt 89.0 63.71 71.6 24.4 24.1
Sedimentary rock 2.0 1.50 75.0 0.5 0.6
Dikes 1.0 0.93 93.0 0.3 0.4
Total 365.5 264.05 72.2 (av.) 100.0 100.0

Hole 418A

Pillowed basalt 366.60 252.23 68.8 67.4 64.5
Basalt breccia 31.15 19.89 63.9 5.7 5.0
Massive basalt 140.70 114.22 81.18 25.9 29.2
Sedimentary rock 0.55 0.37 67.3 0.1 0.1
Dikes 5.00 4.62 92.4 0.9 1.2
Total 544.00 391.33 71.9 (av.) 100.0 100.0
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110 m at Site 418. Pillows are believed to form at low rates of lava discharge (Robinson et

al., 1980).

Breccia commonly occurs as thin layers associated with the boundaries of lithologic

and magmatic units and as minor interpillow accumulations. There are several breccia

types. Thin hyaloclastic breccias are predominantly composed of pieces of greenish,

glassy pillow margins with minor angular basalt fragments. The most common are thicker

breccia units containing broken pillow fragments or lithic basalt pieces. None of the

breccias are bedded. All fragments are poorly sorted. Contacts with pillow units are often

gradational. These breccias probably formed on flow fronts (Robinson et al., 1980).

Breccia units range up to 9 m at Site 417 and 12 m at site 418. No tectonic breccias were

positively identified.

Massive basalt units are present at all sites (Table 9). All units contain phenocrysts

(<20%) and most contain up to 2% vesicles. One unit, about 18 m thick, was recovered

from near the bottom of Hole 417A. In Hole 417D, six units range from 1 to 24 m in

thickness and occur throughout the section. In Hole 418A, two thick units of 47 and 73 m

are composed of sub-units (2-38 m thick) representing individual flow events, the extent of

which are defined by chilled margins or thin highly brecciated zones. By analogy with

subaerial Hawaiian eruptions, massive flow units are believed to form on the seafloor when

sheet flows pond in local topographic depressions under high discharge rates (Robinson et

al., 1980).

Phyric basaltic dikes occur in the basal massive units in Holes 417D and 418A. In

417D, two chemically similar dikes with olivine, plagioclase, and clinopyroxene

phenocrysts and fine-grained holocrystalline ground mass occur at -360 m subbasement.

In 418A, two chemically and mineralogically distinct dikes were found in the deepest

massive unit. A plagioclase-olivine-clinopyroxene phyric basaltic dike occurs at -490 m

subbasement, and a plagioclase-olivine phyric basalt dike occurs at -500 m. These dikes
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are typical"- 20-30 cm wide with glassy margins. They cut vertically through the host

rock.

Within basement sequences, sedimentary rocks are less common at Sites 417 and

418 (<1% of recovered material) than at other basement drill sites in the Atlantic (Robinson

et al., 1980). Most sedimentary rock is chalk or limestone with minor chert (McKenzie and

Kelts, 1980). Layering and fossils are absent, having probably been destroyed by

recrystallization. Fresh and altered basaltic glass is common.

Mineralogy

The basalts are sparsely to moderately phyric with 5-20% phenocrysts (Donnelly et

al., 1980). Plagioclase (5-10%) and olivine (1-3%) appear in most samples. Small,

rounded clinopyroxene phenocrysts are common but rarely exceed 2%. Spinel appears

only rarely as a phenocryst phase in Hole 418A rocks. Most phenocrysts are fresh except

olivine which is typically replaced by smectite and calcite. Some plagioclase crystals show

early alteration to brown smectite and/or K-feldspar. The site reports in Donnelly et al.

(1980) and Flower et al. (1980; our Figures 16 and 17) show phenocryst assemblages in

individual units. Ground mass textures range from quenched to fine-grained in pillow

lavas, whereas the massive units are fine to medium grained and subophitic.

Microprobe analyses of phenocryst phases are presented in Rice et al. (1980), Ui et

al. (1980), Staudigel et al. (1980a), Bollinger and Semet (1980), Clocchiatti (1980), Sinton

and Byerly (1980), and Staudigel and Bryan (1981). Sinton and Byerly (1980) and

Flower and Robinson (1981 a) use these data to infer the crystallization sequences for these

rocks and their petrogenesis. Zoning characteristics of plagioclase phenocrysts within one

sample suggests mixing of magma types (Rice et al., 1980).

Opaque mineralogy of Site 417 and 418 rocks was studied by Plasse (1980), Bleil

and Smith (1980b), Genkin et al. (1980), and Gitlin (1985). Opaque minerals are

dispersed in the basaltic groundmass and usually form less than 5% of the rock by volume.

These minerals include titanomagnetite and ilmenite, the primary magnetic minerals,
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chromite (spinel), pyrite, pyrrhotite, chalcopyrite, and pentlaudite. Plasse (1980) and Bleil

and Smith (1980b) show that titanomaghemite, the primary magnetic mineral at Site 417,

was unaffected by high-temperature alteration. Ilmenite is present only in massive flow

units. Chromium spinel is common only in Unit 6b in Hole 418A where it occurs as a rare

phenocryst. Pyrite is the most common secondary opaque mineral.

Except in Hole 417A, alteration products generally do not exceed 20% of the basalt.

Calcite and clay minerals are the main alteration minerals, but quartz, pyrite and some

zeolites are present. Oxidation is localized and appears to be confined to cracks and

brecciated zones. Hole 417A basalts are pervasively altered with plagioclase replaced by

K-feldspar, zeolites, and clay minerals and olivine replaced by "iddingsite", clay minerals,

calcite, and iron hydroxide. Clay minerals include smectite and celadonite. Studies of

alteration minerals, particularly those from Hole 417A, are summarized below.

Geochemistry

Gieskes et al. (1988) sampled borehole fluid in Hole 41 8A on ODP Leg 102 during

the first re-entry. Chemical analyses of major elements and strontium isotope ratios

indicate diffusive exchange of basement formation water with borehole fluid. No evidence

was found for convective transport.

Several authors have published results of major element chemical analyses of Site

417/418 rocks. A limited number of analyses were performed aboard the GLOMAR

CHALLENGER by X-ray fluorescence and published in the site reports (Donnelly et al.,

1980). On-shore laboratory analyses provided data sets with larger numbers of analyses

and more elements. Microprobe analyses of glass chips were done for Holes 417D, 418A,

and 418B by Byerly and Sinton (1980) and for 418A by Thompson (1980) and Mathez

(1980). Mathez presents sulfur analyses in addition to the more abundant elements. Whole

rock analyses were done for Holes 417D and 418A by Staudigel et al. (1980a), Flower et

al. (1980a), and Emmerman and Puchelt (1980). Flower et al. (1980a) also analyzed Hole

417A rocks. Ui et al. (1980) and Rice et al. (1980) analyzed only Site 417 rocks.
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Based on chemical, lithologic, mineralogic, and paleomagnetic properties, the

section has been divided into a series of eruptive sequences, each made up of individual

units (flows, pillows, etc.) that are related by simple fractional crystalization processes

(Figures 16 and 17; Flower et al., 1980a; Robinson et al., 1980; Flower and Robinson,

1981 a). These eruptive sequences are 50-200 m thick and comprise from 2 or 3 thick.

flows up to -.13 thin flows. Most magnetic property changes coincide with sequence

boundaries. Three important conclusions result from these studies: 1) the extrusive rocks

were tilted and rotated during emplacement, 2) the eruptive sequences tapped either

different magma chambers or tapped a different magma batch from one chamber, and 3)

eruption rates declined with time during the emplacement of the entire section.

Basement rocks at Site 417/418 are low-potassium tholeiitic basalts with relatively

limited chemical variations (Emmerman and Puchelt, 1980). They closely resemble present

Mid-Atlantic Ridge basalts but have greater affinities with rocks recovered from the ridge

crest at 37°N than at 22°N along the tectonic flow line through this site (Byerly and Sinton,

1980). On average, Hole 418A basalts have higher MgO and CaO) and less TiO2, total iron

and Na20 than 417D basalts (Emmerman and Puchelt, 1980). Trace and rare earth element

analyses have been published by Joron et al. (1980, Sites 417 and 418), Rice et al. (1980,

Site 417), Shimizu et al. (1980, Site 417 rare earths), Staudigel et al. (1980b, Sites 417

and 418), Flower et al. (1980a, Hole 418A), and Emmerman and Puchelt (1980, Holes

417D and 418A). Basalts from Holes 417D and 418A are depleted in light rare earth

elements relative to chondritic compositions. Light rare earth depletion is characteristic of

oceanic tholeiites, in general, and all basalts obtained in the western North Atlantic along

the tectonic flow line through these sites (Bryan and Frey, 1986). Staudigel et al. (1980b)

infer that the mantle source rocks are depleted relative to whole earth (chondritic)

composition.

Although most of the observed variation in chemistry can be explained by shallow-

level fractionation of olivine, plagioclase, clinopyroxene and spinel and by post-eruption
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phenocryst movement, multiple parental liquids are required to explain total variation

(Byerly and Sinton, 1980; Flower et al., 1980a, b; Flower and Bryan, 1980). The

differences in parental liquid chemistry, however, are slight and reflect a relatively uniform

mantle source and similar partial-melt conditions. The magmas which fed upper crustal

level magma chambers after partial melting in mantle experienced crystallization and

separation of olivine before eruption.

Flower and Robinson (1981 b) synthesized petrologic, geochemical, and

paleomagnetic data from Sites 417/418 and presented a model for crustal formation. They

find evidence for episodic eruption of lava with similar but distinct major element

compositions, and infer that a steady-state sub-rift magma chamber did not exist. Partial

burial of successive eruption events and block rotation produced an imbricate basement

sequence with downward increasing structural complexity. Crystal fractionation occurred

in two zones, at least: one near the depth of partial melting (20-30 km) and one just below

the rift (1-2 kin).

Hart and Staudigel (1980) and Richardson, et al. (1980) used Rb and Sr ratio

measurements on rocks from Holes 417A and 418A to date formation of the crust to -110-

112 Ma. These results are compared with other dates in the section on age control.

Staudigel et al. (1980b) attribute elevated stroutium ratios (87Sr/86Sr

> 0.7030) relative to average ocean-ridge basalts as an effect of low-temperature alteration

by seawater. Puchelt and Hubberten (1980) found from analyses of sulfur ratios that while

most sulfur appears to be derived from the mantle, sulfate phases in some samples show

effects of low-temperature alteration. In a small number of samples, Rusinov et al.

(1980b) found no downhole variation in carbon and oxygen isotopes from calcite veins.

Javoy and Fouillac (1980) measured oxygen, carbon, and hydrogen isotopes in

samples from Site 417. All data indicate low temperature (7* to 40°C) alteration of Holes

417D and 417A (twice as much as 417D). Both holes have retained some primary carbon,

whereas only Hole 417D has retained primary hydrogen.
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Muehlenbachs (1980) measured oxygen isotopes profiles in Holes 417A, 417D,

and 418A (e.g. Figure 18). 8180 decreases with depth in all hole, rfltct~ng lower

degrees of low-temperature alteration by seawater, to values of -5.8 o/oo, similar to values

measured on unaltered mid-ocean ridge basalt. The depth gradient i. auch steeper in 417

than in the other holes. Samples from breccias and flow margins show the highest 5180

values and, by inference, the highest degree of alteration. Muehlenbachs (1980) uses 8180

values of carbonate minerals to estimate maximum geothermal gradients of -9.6C/1 00 m

in 417A and -5"C/100 m in 418A.

Friedrichsen and Hoemes (1980) analyzed Hole 417D and 418A whole rock

samples for oxygen and hydrogen isotopes. They did not find the same trend with depth as

Muehlenbachs (1980), perhaps as a result of including high 5180 values from breccia and

flow margins.

Lawrence (1980) measured 8180 in samples of calcite veins from Holes 417A and

417D. Assuming the precipitating fluid was seawater, he calculates fluid temperatures of

14" to 41°C in good agreement with Javoy and Fouilloc (1980) and Muehlenbachs (1980).

Alteration

Much has been written on the alteration of rocks recovered at Sites 417 and 418.

The site reports and scientific result chapters contain numerous descriptions of alteration

products and inferences about the processes involved. Later papers focused on

implications for crustal and seawater chemical budgets.

These rocks at these two sites are noteworthy for two reasons. First, these holes

are the oldest, deepest, and best sampled basement sections, in terms of recovery, in slow-

spreading ocean crust. Second, the dramatic degree of weathering, by all measures, in

Hole 417A represents an extreme end product of low-temperature alteration and illustrates,

in comparison to fresher rocks at 417D and 418A, a new length scale of heterogeneity in

ocean crust with a length scale of 0.5-1.0 km.
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Figure 18. From Muehlenbachs (1980).
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Alteration minerals fill veins and vesicles and replace glass and phenocrysts

(Prichard, 1980; Humphris et al., 1980; Pertsev and Rusinov, 1980). In upper sections of

417A, groundmass minerals are also replaced. In Holes 417D and 418A, alteration

products are most common on pillow margins, between flow units, and in breccias. In

417A, degree of alteration decreases with basement depth (Figures 19 and 20). In 417D

and 418A, variations with depth occur, but no overall trend exists (Figure 18).

A!teration products include, in decreasing order of volume, clay minerals,

carbonates, K-feldspars, zeolites, silica, iron oxyhydroxide, opaque minerals, and chlorite

(Pritchard 1980; Humphris et al., 1980; Pertsev and Rusinov, 1980, Scheidegger and

Stakes, 1980; Rusinov et al., 1980a; Juteau et al., 1980, Mevel, 1980; Gitlin, 1985).

Figure 21 shows downhole occurrences of alteration minerals noted by Pertsev and

Rusinov (1980). In 417A, Fe-K rich celadonite (bright green clay mineral replacing

olivine) and a pale green smectite occur. In 418A, olivine is replaced by saponite, an Fe-

rich clay mineral. Plagioclase phenocryst replacement is sometimes incomplete leaving

secondary porosity. In 417A, K-feldspar commonly replaces plagioclase, whereas in

418A it is common only in the oxidation layers. Calcite is the most common carbonate, but

dolomite has been reported as a cavity filling. Zeolites include phillipsite, analcite, and

natrolite. In 417A, hematite, an opaque, hydrous iron-oxide formed under oxidizing

conditions, appears throughout the hole. In contrast, the dominant opaque secondary

phase in 418A is pyrite, an iron sulfide deposited only under reducing conditions. Pyrite is

more common below -430 m subbasement. Two local oxidative zones about 70 m thick

occur at -90 m and -343 m depth.

Holmes (1988) studied the alteration mineralogy of a narrow depth zone in Unit 5

(pillow lavas) in Hole 418A where natural gamma-ray spectrometry logging on ODP

Leg 102 found elevated concentrations of potassium. High potassium was observed in two

types of alteration products which could be distinguished on the basis of porosity, density

and velocity logs. A once-glassy breccia with high porosity, low density, and low velocity
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Figure 19. from Donnelly et al. (1980b).
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Figure 20. Oxygen isotope ratio in Hole 417A from Muehlenbachs (1980).
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Figure 21. Downhole distribution of alteration minerals from Pertsev
and Rusinov (1980).

57

417A

co K20

510 05 •0 5 10

22 1

23 0. ,I I

4 26

250 - .5 27

6 /0

70 3

31 I X

33 0 X34 04
12 0 X37 •

+41 +

42

l 13, b. .

DSstribution of some secondary minerals in t.
holes: (a) 417A, (b) 417D, and (c 418wA .v = pillow
lava, 2 = breccia and hyaloclastite, 3 = massive coarse-
grained subophytic basalts; f = Fe203H(Folo a FeO)b
An = analcime, K-Fsp = K-feldspar, Nat = natrolite, Ph=
phillipsite, Pyr = pyrite, Cel =celadonite, Ox = ferrix
oxides, Z = zeolites, circles =analcime, square = apo-
phyliite, Q = quartz (triangles), 01 = fresh olivine. and
Sil = silica mineral.

I1 = Pillow iavas

S2 = Breccias

S3 = Holocrystalline basalts



Figure 21 continued. 58

417D 41 SA

a Litholoov 6 C.0(% m~ fc X20 Z. ao X0 - l

21 AZ x x x

220

24 2 .1

350 26 2d

A 4

27 400 Ilb: Ei!l A

30 1 1

400 4¶ 6I ' A

35

A3 *

340 Ixw I O

X Il

30 7



59

was altered to K-rich celadonite and/or nontronite by early low-temperature oxidative

alteration. Plagioclase phenocrysts in pillow basalt with low porosity, high density, and

high velocity altered to potassium feldspar by a later oxidative reaction.

The sequence of alteration differs between 417A and 417D/418A. In the latter,

Pritchard (1980) and Gitlin (1985) find evidence for a brief, high, temperature event,

whereas other studies find none. At 417A, an early stage of leaching was followed by

oxidising conditions, indicated by the presence of hematite and celadonite, during which

cavities were filled with secondary minerals (Humphris, 1980). Carbonates were the last

minerals to precipitate. At 417D and 418A, alteration of olivine and celadonite precipitation

in vesicles and veins occurred first. With a change in fluid chemistry to reducing

conditions, the next minerals deposited were pyrite, zeolites, saponite, and possible quartz.

Extensive precipitation of carbonate and limonite occurred later. Mevel (1980) and Holmes

(1988) describe slightly different sequences and present different, more detailed

chronologies.

Isotopic analyses provide additional constraints on the temperature and extent of

alteration. By isotopic dating (Hart and Staudigel, 1978; Richardson et al., 1980; Staudigel

et al., 1981) and comparison to younger rocks (Alt and Honnorez, 1984), the silicate

mineral vein-filling event occurred within a few million years of crustal formation. Calcite

precipitation continued for up to 10 Ma.

Alteration changes the bulk chemistry of the rock. Selective leaching of unstable,

high-temperature phases removes certain elements, while precipitation of low-temperature

phases increases the concentration of other elements. Generalizations are difficult because,

as described above, alteration conditions and products may vary vertically in a hole and

laterally over a few hundred meters. Bulk rock analyses suggest that oxidative alteration of

Hole 417A resulted in net gain of potassium, rubidium, cesium, phosphorus, lithium,

boron and barium and net losses of calcium, magnesium, sodium, and manganese

(slightly); concentrations of silicon, titanium, total iron, most rare earth elements, strontium
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and aluminum did not change (Donnelly et al., 1980b; Ui et al., 1980; Joron et al., 1980;

Rice et al., 1980; Humphris et al., 1980; Staudigel et al., 1981). Alteration of 417D and

418A rocks under reducing conditions produced geochemical exchanges with seawater

which differ in magnitude and direction for some elements: potassium, magnesium,

phosphorous, manganese and sodium show no fluxes in Hole 418A (Humphris et al.,

1980; Donnelly et al., 1980a). Thompson (1983) recalculated elemental fluxes for 418A

(his Table 47.14) and 417A (his Table 47.16). Chemical budget implications of the

alteration of basaltic glass to palagonite are discussed by Juteau et al. (1980) and Staudigel

and Hart (1983). 180 is enriched in altered basalt increasing 5180 (Muehlenbachs, 1980;

Javoy and Fouillac, 1980).

In summary, rocks from upper sections of Hole 417A are some of the most highly

altered seafloor basalts recovered. Rocks from Holes 417D (450 m away) and 418A (7.5

km away) are among the freshest samples of old crust recovered (Honnorez, 1981).

However, low-temperature alteration can be detected throughout 417D and 418A in the

alkali composition of vitreous glass (Staudigel et al. 1980a), phenocryst phases, and

ground mass minerals. Alteration occurs by a variety of geochemical processes active both

synchronously and sequentially under changing geochemical conditions (e.g. Alt and

Honnorez, 1984). Elements lost by one process may be precipitated during another, e.g.,

calcium. In Hole 417A some alteration indices clearly vary monotonically with depth,

whereas in Holes 417D and 418A these same indices do not vary simply with depth (e.g.

5180, Muehlenbachs, 1980). Figures 19 and 20 show downhole profiles in 417A in two

such indices, potassium and 180 (Donnelly et al. 1980b; Muehlenbachs, 1980). In Holes

417D and 418A, alteration products are most common on pillow margins, between flow

units, and in breccias. Although high-temperature hydrothermal processes may have

briefly altered these rocks (Pritchard 1980), most alteration occurred when intra-formation

water temperatures ranged from cold (-2-5"C) to warm (40-50"C) (Muehlenbachs, 1980;

Gitlin, 1985).
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Paleomagnetism and Rock Magnetism

Measurements on magnetic properties of basement rocks from Sites 417 and 418

are tabulated in Levi et al. (1980) and Hamano et al. (1980). Bleil and Smith (1980a) and

Smith and Bleil (1980) discuss paleomagnetic and rock magnetic properties, respectively,

of Holes 417A and 417D. Levi (1980) and Hamano et al. (1980) investigated

paleomagnetism and rock magnetics of samples from 417D and 418A. Plasse (1980,

417A), Bleil and Smith (1980b, 417A and 417D), and Genkin et al. (1980, 417D and

418A) studied opaque mineralogy.

One of the most important observations made on Sites 417 and 418 samples is that

the intensity of natural remanent magnetization in these holes (7-10 x 10-3 Gauss) is twice

that measured in previous DSDP boreholes. These values are consistent with a 500 m thick

magnetic source layer for marine magnetic anomalies (Bleil and Smith, 1980a; Levi, 1980).

The inclination of stable remanent magnetization varies significantly down hole in

Holes 417D and 4l8A but not in 417A (Figures 22 and 23). Bleil and Smith (1980a) and

Levi (1980) interpret these variations differently. Bleil and Smith (1980a) argue that the

variations differ significantly from inclination predicted for the paleolatitude at the time of

formation and ascribe the variation to block tilting of <10° in 417A and at least 40° in the

upper 145 m of 417D. Kelts and Giovanoli (1980) and the Site 417 shipboard report

section on structural features find that pillow thickness, dip of pillow margins, dip of

intercalated limestone beds, and attitude of joints in massive basalts are consistent with

tilting (Donnelly et al. 1980, Part 1). The shipboard scientists judged, however, that

neither the quantity nor quality of these data were sufficient to confirm the hypothesis.

Levi (1980) argues that the mean inclinations in 417D and 418A do not differ

significantly from the predicted inclination and ascribes the changes in inclination to secular

variation. He finds no evidence for tilting. Moreover, Levi (1980) suggests that three

distinct groupings of stable inclination in both 417A and 418A correspond to separate

magma eruption events and that the total time for extrusive emplacement is at least several
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Figure 22. Downhole distribution of magnetic properties in Hole 417A
from Bleil and Smith (1980a).
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Figure 22 (continued). Hole 417D from Bleil and Smith (1980a).
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in Oe).
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Figure 23. Downhole distribution of magnetic properties in Hole 417D

from Levi (1980).
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Figure 23 continued. Hole 418A.
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thousand years. Levi (1980) places these boundaries at 145 m and 260-295 m (breccia

zone) in 417D and at 178-190 m (breccia zone) and 390 m depth in 418A.

Physical Properties

The site reports contain results of shipboard measurements of wet bulk density,

compressional wave velocity perpendicular to core axis, and porosity (Donnelly et al.,

1980; Figure 24). From these measurements, grain density and acoustic impedance were

calculated. Using average property values for common lithologies and the distribution of

lithologies with depth, Donnelly et al. (1980) reconstructed continuous depth profiles of

density, velocity and porosity (Figure 24).

In 417A, properties clearly varied with depth. Density increased downward from

2.4 to 2.85 gm/cm 3 at the base of hole. Velocity also increased downward from 3.8 to

greater than 5.8 km/s. Porosity decreased from greater than 25% to 7.8%. Breccias gave

extreme values for density, velocity, and porosity of 2.2-2.5 gm/cm 3 , 2.9 km/s, and up to

56%, respectively.

At 417D, physical properties show little dependence on depth (Figure 24).

Throughout, values are similar to those at the base of Hole 417A. Density averages

2.8 gm/cm 3, velocity averages 5.5 km/s, and porosity ranges between 2 to 10%.

At Hole 418A, physical properties vary with depth in a manner similar to Hole

417A, but density and velocity are higher, porosity is lower, and the variations are less.

Density ranges from 2.3 to 3.0 gm/cm 3 and averages 2.8. Velocity averages 5.6 km/s but

ranges from 2.8-4.85 km/s in breccias to 5.75-6.24 km/s in massive basalts. Porosity

decreases with depth below -75 m subbasement from 5-10% to 1-2% at bottom. Seawater

permeability ranges from 2.0 x 10-16 cm 2 in coarsely grained basalt to 1.4 x 10-13cm2 in

breccia. Donnelly et al. (1980) infer that large depth scale changes are due to changes in

degree of alteration rather than to lithologic variations.

Hamano (1980) made additional density, velocity, and porosity measurements on

Hole 417D and 418A samples. He also measured electrical resistivity (20 to 1714 ohm-m,



Figure 24. Basement physical properties from Donnelly et al. (1980).
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Figure 24. (b) Hole 417D from Donnelly et al (1980).
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Figure 24. (b) continued
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Figure 24. (c) Hole 418A from Donnelly (1980).
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Figure 24. (c) continued
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mean = 120), thermal conductivity (4.03 to 4.64 m callcm-sec-*C, mean = 4.31), shear

velocity (2.59 to 3.4 km/s, mean = 3.10), and air permeability (2.7 x 10-17 to 2.8 x 10-

14cm2, mean = 1.1 x 10-16). He calculated a mean Poisson's ratio of 0.282_+0.011.

Hamano (1980) also measured P-velocity as a function of confining pressure up to 1 Kbar

and found that the correction to in situ conditions (-300 bars) is -3.5% and is independent

of initial velocity. Most physical properties show a strong dependence on porosity.

Christensen et al. (1980) measured wet-bulk density, porosity and P-wave velocity

under confining pressures up to 6 Kbar for 88 samples from Holes 417A, 417D, and

418A. Most data fell closely about the density-velocity relationship derived by Christensen

and Salisbury (1975). Unexpectedly, the porosity-velocity relationship did not vary at

different confining pressures. Apparently, even these extremely high pressures are

insufficient to close vesicles and grain-boundary cracks.

Johnson (1980b) measured liquid permeabilities on 10 samples from Hole 418A.

The average permeability of fresh basalt is 5.2 x 10-16cm 2. The presence of smectite clays

tends to decrease permeability, whereas calcite veins tend to increase it. He measured a

total range of 10-14 to 10-17cm 2.

Johnson (1980a) counted open cracks and filled veins throughout Hole 418A. Not

surprisingly, peak counts corresponded with depths of lithology change and breccias.

Oblique cracks were more common than vertical or horizontal cracks. Zones of intense

cracking may significantly affect seismic velocity.

Choukroune (1980) studied microfracture evidence for brittle deformation of basalt

samples from Hole 417D and the lower 150 m of Hole 418A. Only tensional structures

with dips of 50°-60* occur in Hole 417D. Low angle reverse faults were observed in 418A

samples.
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LOGGING STUDIES

Hole 417D - DSDP Leg 51

Hole 417D was logged on Leg 51 after -128m of basement penetration. Twenty-

five meters of 16 inch steel casing, hung from the re-entry cone, protected the top of the

hole. Logging operations took over five days. During logging, the bottom of the drill pipe

was usually at -190m below seafloor, so the only sediment logged in open-hole conditions

was the basal, Cretaceous section (-150m thick). Difficulties included frequent sediment

bridges, in-filling of basement section, and failure of tools and rigging. Only three of nine

tools run gave "excellent results". Logging reached ~100m subbasement depth. Figure 25

and Table 10 show tool coverage.

Salisbury et al. (1980a) describe the corrected logging results, which are provided

on a fold-out sheet (22 inches long) accompanying the site report volume. In the sediment

section, no significant results were obtained, although several deeper unit boundaries were

better pGsitioned using logs. Figure 26 shows the results of basement logging. In both

sediments and basement, changes in velocity, density, porosity, and resistivity appear to

coincide with lithology changes. Basement sonic velocities range between 4.7 and 5.8

km/s ant average 5.3 km/s. Because sonic log velocities for massive basalts agree with

laboratc y measurements, Salisbury et al. (1980a) concluded that log velocities are

accurate. The uppermost 100 m of 417D has a formation velocity of 4.8 km/s consistent

with results from the oblique seismic experiment (see below) and with seismic refraction

data for old, slow-spreading crust. Significant porosity remains despite precipitation of

low-temperature alteration minera!L. The porosity of pillow basalts averages 13% and is

distributed 8% due to grain boundary porosity and 5% due to cracks filled with seawater.

Porosity ranges from 20% in breccias to 3% in massive basalts (Salisbury et al., 1980b).

Resistivity values range from 3 (breccias) to 200 ohm-m (massive basalts) but

generally fall between 30-80 ohm-in. Since most values are less than typical laboratory
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Figure 25. Depth coverage of logging operations in Hole 417D on Leg 51.

From Donnelly et al. (1980).
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Table 10. From Salisbury et al. (1980a)

Hole 417D Geophysical Logging Runs

Depth Interval
Run Tools (m sub-bottom) Remarks

1 High Resolution Temperature (HRT) 0-44 Through pipe
44-46 Open hole; terminated by caving

2 Borehole Compensated Velocity (BHC) 144-445 Open hole
Natural Gamma Ray u-144 Through pipe

144-445 Open holeCaliper - Signal lead broken, spot readings only
3 Gamma Ray Density 320-369 Open hole

114-443 Open hole; excentralizer broken; data not shownNeutron Porosity 320-369 Open hole
114-443 Open hole; excentralizer brokenNatural Gamma Ray 114-443 Open hole

4 Electrical Resistivity 117-434 Open hole; no centralizer
(ILM, ILD, LL8)
Natural Gamma Ray 117-434 Open hole



Figure 26. Corrected logs for basement section in Hole 417D. 76

From Sal.isbury et al (1980b).
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Figure 27. Downhole coverage of logging operations in Hole 418A

of Leg 102 from Shipboard Scientific Party (1986).
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Table 11. From Shipboard Scientific Party (1986)

Leg 102 downbole-operations summary, Hole 418A.

Depth
below

Time rig floor Depth Logging Data

Run Date (hr) (in) (mbsf) direction Tool/testa quality Remarks

HPC temperature probe-Barnes/Uyeds temperature probe-water sampler

1 3/24/85 2145-2400 b5571- 5 6 0 0  52-81 Down HPC temperature Good
Uyeda temperature Good

3/25/85 0000-0300 Barnes water sampler Good Sampled at 81 m

2 3/26/85 0330-0645 b6 1 4 3 - 6 16 7  624-649 Down HPC temperature Good
Uyeda temperature Good
Barnes waler sampler Good Sampled at 649 in

USGS magnetic susceptibility tool

I 3/26/85 1625-2400 c5805-5847 295-337 Down Susceptibility Good Tool temperature

3/27/85 0000-0320 Conductivity Poor too low

2 3/27/85 0535-1200 c5831-5990 321-480 Down, up Susceptibility Good Tool temperature too

Conductivity Poor low (down only)

Downhole logging

I 3/27/85 1245-2130 '5837-5990 327-480 Up Vp Good
Sonic waveform Good

OILM Good
ILD Good
SFL Good

I Good
Caliper Good

2 3/28/85 0330-I 115 c5968-6298 458-788 Down, up Vp Good
Sonic waveform Good
fILM Good
ILD Good
SFL Good
'Y Good
Caliper Good

3 3/28/85 1115-2100 '5510-5972 0-462 Up Spectral -I Fair Through pipe

5972-6300 462-790 Down, up Good

5510-5972 0-462 Up -,-densiiy Poor Through pipe

5972-6300 462-790 Down, up Good

5510-5972 0-462 Up Neutron porosity Poor Through pipe

5972-6300 462-790 Down, up Good

German three-axis magnetometer

I 3/28/85 2100-2400 '5975-6300 465-790 Down. up H,, 2  Good

3/29/85 2400-1500

Downhole logging

4 3/29/85 1500-2345 C6 0 0 0 - 6 2 9 5  490-785 Up fl Laterolog LLS Good
LLD Fair Out of calibration

LDGO multichannel sonic tool

1 3/30/85 0100-0745 15875-6310 365-800 Down, up Vp, Vs Good

USGS magnetic susceptibility tool

3 3/30/85 0745-1600 '5975-6310 465-800 Down, up Susceptibility Good Tool temperature too

Conductivity Poor low (down only)

WHOI borehole seismometer

I 3/30/85 1815-2400 6065. 6165, 555. 655. Stationary Vp, Vs%. Vsh Good Shooting conducted

3/31/85 0000-2400 '6265 755 Anisotropy by Moore

4/1/85 0000-2400
4/2/E5 0000-2400
4/3/85 0000-2400 5853, 5876, 343. 366, Stationary Evanescent waves Good Cable failed to

4/4/85 0000-0430 '5916 406 5853-m position

Packer

4/6/85 1625-2400 5867. 5985, 347, 465. Stationary Pore prmssure, - Packer would noi

4/7/85 0000-0930 16037 51'7 permeability seal

L-DGO borehole televiewer

4/7/85 1200-2300 '5870 360 Down Borehole tmagerN Fair Slow sweep.
Acoustic caliper Fait tool caught

on ledge

See test and Table 6 for specifications

Subtract 10 m to obtain depth below sea level

Equals depth below sea level (rig-floor height and cable stretch cancel each other. by coincidence)
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resistivities (97 ohm-m), Salisbury et al. (1980a) conclude that seawater-filled cracks

penetrate basement.

Hole 418A - ODP Leg 102

ODP Leg 102 returned to Hole 418A to log the basement section. The site report

(Shipboard Scientific Party, 1986) describes operations and initial results. Fifteen logging

tools were run. Operations also included borehole water sampling and temperature

measurements, an oblique seismic experiment, and unsuccessful attempts to operate a

borehole packer and televiewer. Figure 27 and Table 11 show the depth distribution and

overall quality of logging data. Since the pipe bottom was left near the sediment-basement

contact during wireline logging, only the natural spectral gamma ray tool obtained

reasonable data in the sediment section. Because a sonic tool and cable lost on Leg 53 were

believed to be still in hole, logging stopped -100 m above total m hole depth (450m into

basement). During hole washing operations done after logging was completed, no

evidence of the tool was found.

Paper copies of the logs are provided with the Leg 102 site report. Figure 28

shows the composite depth section. Digital copies of the Schlumberger data are available

from the Borehole Research Group at Lamont-Doherty Geological Observatory.

Carlson et al. (1988b) used the gamma ray log to revise unit boundaries in the

sediment section (Figure 29). They used an empirical travel time-depth relation for deep-

sea sediments to correlate unit boundaries to seismic reflection events (Figure 30).

Broglia and Moos (1988) used Schlumberger logs (Figure 31) to determine in-situ

physical properties (velocity, density, resistivity, and porosity) and to compute relative

volume proportions of smectite, basalt, matrix porosity, and fracture porosity (Figure 32).

They computed upper and lower bounds to original porosity and velocity (Figure 33).

They subdivide the basement section into a relatively unaltered zone above 64m (388 m

below seafloor); a high-porosity, smectite-rich zone above 190m (the breccia unit 6a at 514

m below seafloor); and low porosity zone below.



80
Figure 28. Basment logs collected in Hole 418A on ODP Leg 102 from

Salisbury et al (1988).
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Figure 29. Gamma ray logs in sediment section of Hole 418A from Carlson
et al. (1988b).
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Figure 29 continued.
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Figure 30. Correlation of gama ray log with reflection profile from
Carlson et al. (1988b).
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Figure 31. Schlumberger logging data at Hole 418A from Broglia and Moos (1988).
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Figure 31 continued.

T THERMAL
SPECTRAL I NEUTRON URANIUM

GAMMA RAY I POROSITY
C •Omputed I V6, - PHOTO-

0 GAPi un,tS5 100 BUL 0 ELECTRIC 3 PPm 0
Total DENSITy EFFECT POTASSIUM

0 = z G•Pi unrts5 1.5 .1CM
3 
350 oarnsie 1 w1% 0 1.5

PB I
MB 2A -------------------------------------

MB 2C

MBa 20

2 2 PB 3
24 4 5900-

-4029. . I..o

32
PBS 5 590S

-450

34 .

35 "5

36 6B

30

S"-50039 -.

4 B 6A

4 t
44 6050-

45 -*"550

PB 6 250'
4? 4

49

52 
-600

54 PS? 7

_ so ,

58 BA8ss

9 1
MB 10

63

64 '

65 PS 13A

Pil 138 6250-

69 ..

Pe 13C .. ' -

Core recovery, log-determined lithology, and logging data as a function of
depth in Hole 418A. Spectral gamma-ray ind neutron logs were run through the pipe
from 324 to 464 mbsf. Neutron and density logs are corrected for borehole conditions
(see text). Logging data are smoothed by using a 5-point running average (0.75-m depth
interval). PB = pillow basat; MB = massive basalt; B - breccia.



86
Figure 32. Computed smectite volume, total porosity, and primary porosity

in Hole 418A from Broglia and Moos (1988).
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Figure 33. Upper and lower limits on the riginal basment porosity and velocity
computed from log data in Broglia and Moos (1988).
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Moos (1988) used 12-channel sonic wave forms to compute velocity, energy, and

frequency content of P, S, and Stoneley waves (Figures 34 and 35). All parameters show

dependence on lithology. P and S velocities are almost independent of borehole depth,

whereas Stoneley wave velocities increase downward by -7%. Maximum shear and

compressional energy also increase systematically with depth.

Carlson et al. (1988a) examined the relationship between density and velocity

measured by logging. The relationship for 418A logs agrees well with laboratory data.

Because agreement was not found in a previous study for DSDP holes drilled in crust

younger than 20 Ma, they argue that the relationship between crustal properties changes

with age. They do not comment on the fact that a similar data set from Hole 417D

(Salisbury et al., 1980a) appears to agree better with the younger crustal holes than with

418A.

Wilkins et al. (1988) cross plot formation factor, tortuosity, and a velocity-porosity

ratio computed from log data. They argue that, with better log data, such plots may be

used to discriminate lithologies and formation physical properties.

Bosum and Scott (1988) found that the downhole changes in magnetic

susceptibility and total magnetization (Figure 36) correspond with lithology changes and

agree well with laboratory measurements. In particular, they confirm the magnetic reversal

boundary at 185m sub-basement depth (breccia, unit 6a). Computed magnetic pole

positions agree with the apparent polar wandering paths for North America.

Salisbury et al. (1988) summarize results from Leg 102 logging. They compute

average properties for the upper 0.5 km of crust: 86% basalt, 9% alteration products and

vein filling, and 5% seawater filled cracks. They subdivide basalts into 69% pillows, 17%

massive flows, and 4% cemented breccias. The basalts themselves contain vesicular and

grain boundary porosity which increases the total formation porosity to 15%. Units with

highest porosity values (5 and 6A) have formation porosity of 20% (14% primary, 6%
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Figure 34. Basement velocity data trom multichannel logging at Hole 418A

by Moos (1988).
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Figure 35. Peak frequency and energy in P and S waves in Hole 418A from
Moos (1988). 90
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Figure 36. Sediment and basement magnetic logs from ODP Leg 102/ Hole 418A

by Bosum and Scott (1988).
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Figure 36 continued.
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Figure 36 continued.
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cracks) and 19% clay content. They estimate formation porosity at time of emplacement

was -40%.

BOREHOLE SEISMIC EXPERIMENTS

Oblique seismic experiments with a three component seismometer were conducted

in Hole 417D on DSDP Leg 52 (2 clamping depths, 165 shots; Stephen et al. 1980a,b) and

in Hole 418A, located 7.5 km away, on ODP Leg 102 (5 clamping depths, 3296 shots;

Swift et al., 1988; Swift and Stephen, in press). P-wave travel times were inverted by the

,t - ý method for velocity assuming lateral homogeneity (Table 12; Stephen and Harding,

1983; Swift and Stephen, in press). Velocities were also determined by the inflection point

method (Table 13). Figure 37 shows P and S (assuming Vp/Vs = 1.82, a = 0.28)

velocities at Hole 418A. Since the 95% confidence limits on depth for 417D and 418A

overlap (Figure 38), Swift and Stephen (in press) concluded that the average crustal

velocity properties near the two sites are not significantly different. There is an indication

of lateral heterogeneity in the P-wave travel times at Hole 418A. Travel time anomalies

suggest that seismic velocity in the upper 0.5 km increase towards the northwest out to -5

km shooting range, although the nature of the anomaly is poorly constrained (Figure 39

and Table 14; Swift and Stephen, in press). The vertical gradients in velocity determined

by sonic log and oblique seismic experiment do not agree well (Figure 40). Taking these

results at face value, we may infer that the vertical sequence of lithogy and degree of

alteration observed at 418A may not represent the properties of the crust averaged laterally

over several kilometers. Travel-time analyses at both holes show no evidence for crustal

anisotropy, although measurement error at 418A could mask anisotropy of up to 0.2-0.3

km/s (Table 15; Swift and Stephen, in press). Preliminary analyses of ambient noise

spectra in the 2-30 Hz band indicate that only the most quiet 3-second windows are as quiet

as that observed during the Ngendie Experiment (Figure 41; Stenhen and Swift, 1986).
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From Swift and Stephen (in press)

Table 12 Results of r-ý inversion.

Velocity Depth Minimum Depth Maximum depth
(km/s) (km) (kim) (kim)

Hole 418A (This paper)
4.545 0.0
5.181 0.408 0.197 0.619
5.747 0.883 0.696 1.070
6.211 1.380 1.045 1.716
6.803 1.756 1.614 1.897

Hole 417D (Stephen and Harding, 1983)
4.400 0.0
5.025 0.353 0.193 1.514
5.682 0.698 0.592 0.804
6.623 1.487 1.339 1.635

Table 13 Inflection point ranges and velocities from cubic spline fits to
radial line data.

Before Correction After Correction
to basement To Basement

Geophone Range Velocity Range Velocity
Depth (km) (km/s) (kin) (km/s)

41 4.7 4.60 3.2 4.81
81 3.2 4.63
230 4.5 4.86 3.0 5.10
330 4.4 4.86 3.2 5.07
430 5.0 4.95 3.8 4.99
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Figure 37. P and S velocity profiles for Hole 418A from the oblique

tseismic experiment (Swift and Stephen, in press).

Circles and triangles are inflection point velocitiesfrom

travel time-range relationscbefoer and after reduction of travel

times to basement, respectively. Dashed lines are the 95%

confidence limits on the P velocity profile obtained by

tau-zeta inversion of P travel times. S velocity profile

from trial and error travel time modeling and amplitude relations

in reflectivity seismograms. Vp/Vs = 1.82; Poison's ratio = 0.26.
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Figure 38. Comparison of P velocity profiles from Hole 417D (Stephen and

Harding, 1983) and 418A (Swift and Stephen, in press).

Velocities from tau-zeta inversion of P travel times.

Lines not connecting symbols are the 95% confidence limits

on depth.
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Figure 39. Comparison of arrivals determined by raytracing through two
laterally heterogeneous structures with arrivalt for the
receiver at 330 m depth and a shooting range of 4 km. Solid
line is the one theta fit from harmonic analysis. Short dashed line
indicates arrivals from shots at 1.9 km range using a linear notthward
velocity gradient of 0.76 1/sec tied to a borehole velocity of
5.06 km/s (Tablel4 bottom). Long dashed line depicts arrivals at 1.9 km
range using a step discontinuity model with 4.6 km/s to the south
and 6.8 km/s to the north (Table 7). Discontinuity is offset by
0.2 km to the north of the borehole. From Swift and Stephen
(in press).
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From Swift and Stephen (in press)

Table 14 Lateral velocity contrast inferred from the 16 travel time anomalies in the 2 and 4

km shooting range circles. Velocity variation modeled as a vertical discontinuity between

two laterally and vertically homogeneous slabs.

Receiver Basement Average 10Travel1 Interpolated Velocity Velocity

Depth Range Travel Time Velocity North South Contrast
(M) (kin) Time (s) Anomaly (s) (km/s) (km/s) (km/s) (km/s)

230 0.646 0.133 0.01911 4.90 5.67 4.25 1.42
230 2.103 0.377 0.05502 4.90 6.53 4.87 1.66
330 0.614 0.139 0.01169 5.06 4.82 4.07 0.75
330 2.045 0.369 0.06555 5.06 6.74 4.71 2.03

430 0.734 0.164 0.01209 5.21 4.83 4.17 0.66

430 2.178 0.389 0.04337 5.21 6.30 5.04 1.26

One-half peak to-peak variation from Table 2.

Lateral velocity gradients and velocities inferred from the 10 travel time

anomalies in the 2 and 4 km shooting radius circles assuming no vertical velocity change

and using a linear gradient model for lateral velocity va.riations.

Receiver Basement 10 Travel Best fit Velocity (km/s)

Depth Range Time Anomaly Gradient Range from borehole (km)

(M) (kin) (s) S- 1  -2 -0.6 0 +0.6 +2

230 0.646 0.0382 1.81 1.30 3.83 4.92 6.01 8.54

230 2.103 0.1088 0.60 3.72 4.56 4.92 5.28 6.12

330 0.614 0.0234 1.64 1.65 3.95 4.93 5.91 P 21

330 2.045 0.1311 0.71 3.51 4.50 4.93 5.36 6.35

430 0.734 0.0242 1.18 2.67 4.32 5.03 5.74 7.39

430 2.178 0.0867 0.48 4.07 4.74 5.03 5.32 5.99
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Figure 40. Comparison of velocities from tau-zeta inersion (solid line
connecting squares; dashed lines are 95% confidence limits)
and inflection point method with velocities logged in Hole 418A
on ODP leg 102 witn borehole compensated sonic tool (Shipboard
Scientific Party, 1986). Sonic log is moving average of velocities
over about 7 m.
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Table 15 Estimate of anisotropy that may be hidden by experimental error and lateral
heterogeneities. Estimate assumes that one-half the peak-to-peak amplitude of anisotropy
equals the standard error of the observed travel times.

Receiver Shooting MeanI Standard Anisotropy Depth of4  Velocity5  Velocity
Depth Range Travel Error 2  ray turning at turning Anisotropy
(M) (km) Time (s) (s) (%)3 point (km) point (km/s) (km/s) 6

230 2 0.133 8.253E-3 ±6.2 <0.4 4.90 ±0.30
330 0.139 7.444E-3 ±5.4 5.06 ±0.27
430 0.16A 7.283E-3 ±4.4 5.21 ±0.22

230 4 0.377 2.765E-2 ±7.3 0.27 4.96 ±0.36
330 0.369 2.198E-2 ±6.0 0.35 5.09 ±0.30
430 0.389 3.094E-2 ±8.0 0.44 5.22 ±0.42

81 6 0.874 3.556E-2 ±4.1 0.55 5.35 ±0.22
230 0.862 2.781E-2 ±3.2 0.63 5.44 ±0.17
330 0.856 3.476E-2 ±4.1 .0.68 5.50 ±0.22
430 0.815 4.016E-2 ±4.9 0.75 5.59 ±0.27

230 8 1.368 4.553E-2 ±3.3 1.4 6.24 ±0.20
330 1.359 3.651E-2 ±2.7 1.5 6.40 ±0.17
430 1.263 3.268E-2 ±2.6 1.6 6.56 ±0.17

1. From Table 2.
2. For circles shot at 2 and 4 km radius, standard error about 18 variation. For 6 and 8 km

circles, standard error about mean.
3. Standard error times 100 divided by mean travel time.
4. For 2 circles, rays turn above receivers. For 4, 6 and 8 km circles, depths are from ray

tracing through velocity gradients given by r-ý Inversion. Deepest gradient (between 1.38
km and 1.76 kin) was extended to 2 km depth to %et ray depths for 8 km circles.

5. Velocities found by interpolation between 'r-, inversion velocities.
6. Product of percentage of anisotropy/100 and velocity at depth where rays turn.
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Figure 41. Noise spectra from Stephen and Swift (1986).
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Preliminary power distribution maps have been compiled for 418A. We computed

total power in a 2-second window after the P-wave arrival for explosive and airgun data at

each of 5 seismometer depths (Figure 42 top; no airgun data at 41m). We computed means

in 1.0 km sliding windows with 0.2 km overlap and corrected each shot for the mean

(Figure 42 bottom). Figure 43 shows plots of five seismometer depth-source combinations

at 2 dB contour intervals. Variations in residual power are due, presumably, to small scale

heterogeneities, azimuthal variations, and error. Other receiver-source pairs could not be

contoured because of too little data or because of variations during shooting in source

power. The only consistent pattern is relatively low power values at most ranges in the

azimuthal window -250"-360° from Hole 418A. Azimuths of-40°-80° and -180°-220°

tend to have higher values than elsewhere.

DATA STORED IN NATIONAL GEOPHYSICAL DATA CENTER

Underway Geophysics

We searched the National Geophysical Data Center (NGDC) files in the region 24*

to 26°N latitude and 67" to 69"W longitude for bathymetry, seismic, magnetic and gravity

data. The search found a total of 32 cruises that had collected at least one of these types of

data within the region: 29-bathymetry, 20-seismic, 18-magnetics, and 12-gravity. Two

significant omissions in the NGDC data set are the LYNCH 702 cruise in Fall, 1976, and

the FRED MOORE cruise in Spring, 1985. Both ships collected bathymetry and seismics,

whereas only the LYNCH collected magnetics. Table 2 lists all cruises.

Based on tracklines we identified cruises which passed within 15 km of Sites 417

and 418 (Table 16). This subset contains all the cruises which obtained data in the

immediate vicinity of the boreholes. Figure 44 shows cruise tracks obtained from various

sources.

A variety of methods have been used to navigate the ship tracks listed in Table 2.

Some methods have large errors. We used bathymetry to integrate cruise tracks, but in
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Figure 42. Range plots of total power (sum of vertical and two orthoganAl
horizontal components) for two seconds after the P arrival.
Top panel shows uncorrected data. Source type is given in
upper left and receiver depth in upper right. Solid line
connects averages in one kilometer window moved with 0.2 Ian
overlap. Bottom panel shows data corrcted for moving average.
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Figure 42b.
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Figure 42c.
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Figure 42d.
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Figure 42e.
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Figure 42f.

120
mAirgun 330 M
"- 110 Total Power

~100- 00 00
O 0 0oo

-80 00
L. 70
oU Power in P. S, and D arrivals (2 sec window after P)
c 60-

0 2 4 6 8 10

20- 0 Window: 1.0 km

0 W

m 15 0 0Offset: 0.2 km
" "5 - oo 01 00 0 0

S-5 0)-I0

0 0

cu -10 co
I,-

o -15
0 -20 I I

0 2 4 6 8 10

Range (kin)



110
Figure 42g.
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otal power received during shooting of the oblique seismic

6• xperiment at Hole 418A on ODP Leg 102. Data corrected for

oving average computed over a 1 km window (see Figure 42).
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Figure 43b.
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Figure 43c.
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Figure 43e.

10 1 I 1

430m Geophone Depth
Explosives

-5-3

6--

0034- -5fC

-1f

I/2 
-

:•~ . -f•/ .

-8 - Total Power in 2sec Window

Contours in DB Relative to Mean

"-10I I I I

-10 -8 -6 -4 -2 0 2 4 6 8 10

Kie OME TERS

mmIn ,m m i mmiu mmnnn muI



118

TABLE16 --LIST OF SCIENTIFIC CRUISES WHICH COLLECTED DATA
WITHIN 15 KM OF SITES 417 and 413

Cruise Institution Navigation

VEMA 1802 LDGO Celestial?

ROBERT CONRAD 1903 LDGO Satellite, DR

LYNCH 702 Navy "

GLOMAR CHALLENGER 51,52,53 SIO Satellite, DR, BT

ROBERT CONRAD 2012 LDGO Satellite, DR

ATLANTIS II 97-2 WHOI Satellite, DR, BT

FRED MOORE UT Radar

SEDCO/BP 471 102 TAMU Satellite, DR, BT



Figure 44. Tracklines compiled by Rabinowiztz et al (1980).
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Figure 44. Trackline of FRED MOORE during seismic reflection survey of Hole 418A
A from Auroux and Stephen (1986).
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Figure 44C. Shot point locations during shooting of the Oblique Seismic

experiment at Hole 418A. Shooting ship was FRED MOORE.

Water depth was recorded at each shot location. J
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Figure 444'. Tracklines by WHOI vessels archived in the NGDC.
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Figure 44e. Tracklines of LDGO vessels archived in the NGDC.
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Figure 44-. Tracklines by SIO vessels (GLOMIAR CHALLENGER) archived in the

NGDC.
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Figure 443. Tracklines by NOAA veseels archived in the NGDC.
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Figure 44h. Tracklines by U.S. Navy vessels archived in-the NGDC.
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Figure 44ý. Tracklines by Texas A&M University vessels archived in the NGDC.
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Figure 44.. Tracklines by Univ. of Rhode Island vessels archived in the NGDC.
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regions of low seafloor relief such as Sites 417/418, significant crossover errors are

common. As a result, the relative locations of observations collected by different vessels

are in doubt even when more accurate bottom transponder methods have been used.

NGDC did not return information on how each cruise was navigated. Table 16

shows navigation methods inferred for the most significant cruises. Sites 417/418 are

outside the range of reliable, consistent Loran C navigation. Sky waves are common and

diurnal variation in locations are too great for accurate navigation. Satellite navigation is

not available at all times of day so large windows of deduced reckoning must be used. As

a result, neither Loran C nor satellite navigation are satisfactory for accurate surveying.

Two other problems have arisen in processing navigation data. First, the

ATLANTIS II 97-2 cruise navigated a deep-towed hydrophone seismic survey with a

bottom transponder network. Because of uncertainty in the locations of their transponders,

bathymetry data from their cruise has been difficult to integrate with that from other bottom

navigated cruises. Second, during ODP Leg 102 the FRED MOORE navigated relative to

the drillship by radar and observer-reported azimuth. Latitude and longitude were resolved

by using the DSDP reported location of Hole 418A. This method provides accurate

ranging, especially when shooting outside the bottom transponder network near Sites

417/418. Errors in location at up to 8 km range are less than ±10 m relative to the drillship.

Significant error, however, was discovered in traveltimes due to changing offset of the

drillship from the borehole by hundreds of meters (Swift et al., 1988).

Cores

NGDC searched its files for surface sediment cores in the region 24" to 26"N

latitude and 67" to 69°W longitude. We also searched the files of the WHOI core

repository. Table 17 lists these two data sets by research vessel.
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I. ENGINEERING REPORTS

Cone Specifications

In order to design the BCU frame and to provide supporting information for the re-

entry effort, we carried out engineering review of the cone, casing, and casing hanger

assembly used at Sites 417 and 418. Storms and Gerken (1983) is a synopsis of the

engineering blueprints used to manufacture the cone and hanger assemblies. However, at

the time of deployment (1977) the systems were in the development stage and not all

modifications were well documented. We present here three possible descriptions: i) the

WHOI interpretation of what the cone and hanger assemblies look like (this is based on a

synthesis of data available from DSDP and ODP by A. Bocconcelli and a discussion by R.

Stephen and P. Thompson at ODP); ii) a version of the WHOI drawings corrected by D.

Huey at ODP (Huey admits in his letter of August 2, 1988, that there are some uncertainties

in dimensions) and iii) an actual photograph of the re-entry cone at Site 396, east of the

Mid-Atlantic Ridge, which was deployed on DSDP Leg 46 just one year before the

deployment of the Site 417 and 418 cones.

The WHOI interpretation of the re-entry cone dimensions is given in Figure 45.

This is an assembly diagram and the drawing numbers for the individual pieces are

indicated. These drawings are included in DSDP Technical Report No. 13. The unit

consists of a cone with a skirt to prevent it from sinking into the sediment. The cone rim is

9.65' above the bottom of the skirt and the cone O.D. is 14.48'. On the rim of the cone are

three sonar reflectors. In addition three sonar reflectors at- suspended above the cone by

10" glass spheres. The photo reconnaissance survey will try to confirm the presence and

condition of these reflectors. The cone leads into a casing hanger assembly below the skirt.

In some designs three tubes lead from the casing hanger assembly to the rim of the skirt to

carry drill cuttings out of the hole. The assemblies at Site 417 and 418 are dual casing

assemblies designed to suspend casing with diameters of 16" and 11-3/4" at the same time.
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Only 16" casing was actually deployed in these holes. Hole 417D has 25 m of 16" casing

and Hole 418A has 71 m of 16" casing.

A detailed assembly drawing of the casing hanger assembly is shown in Figure 46.

The bottom of the cone has an inside diameter of 24". The outside diameter of the casing is

16" and it weighs 75 lb/foot. The corresponding inside diameter is 15 1/8".

The above drawings were sent to Dave Huey at ODP for confirmation of

dimensions. He agreed that actual dimensions are difficult to obtain, but he made some

changes to our values. The drawings annotated by Huey are given in Figures 47 and 48.

Thus, figures 45-48 illustrate the present level of uncertainty in these numbers.

In July-August 1988, IFREMER dove on Site 396B with their deep diving

submersible NAUTILE. They deployed the re-entry device NADIA which is described by

Legrand et al. (in press). Since the cone at Site 396 was deployed just a year before the

cones at 417 and 418, the condition of the coies after twelve years on the seafloor should

be similar. A photograph of the 396 re-entry cone is shown in Figure 49. The top of the

cone is one meter below the seafloor. This was due to miscounting casing stands on

deployment and was suspected in 1977. (We do not expect the cones at 417 and 418 to

have sunk into the seafloor.) Otherwise the cone is in excellent mechanical condition. The

casing was open to basement (170 in). Five re-entries were made with the submersible to a

maximum depth of 301 m. This test of the NADIA system demonstrated the feasibility of

re-entering boreholes on the seafloor without the drill ship more than ten years after the

drilling.

Operations Resumes

Sites 417 and 418 were drilled on Legs 51, 52 and 53 of DSDP. The cruise

operations managers wrote notes on the cruise operations for each leg (Foss and Knapp,

1980). The notes contain steaming times, hole locations, drilling summaries, descriptions

of problems, etc. These notes provide useful background information on the sites in

addition to the summary papers in the Initial Reports.
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In March 1985 the JOIDES Resolution (Leg 102) returned to Site 418 and re-

entered Hole 418A to carry out a downhole measurements program. The operations of this

cruise are described in Foss and Thompson (1985).

SEAFLOOR OBSTACLES

DSDP Cones

We obtained revised locations of boreholes drilled by DSDP from Glenn Foss,

drilling superintendent at ODP. Table 18 lists locations of all holes and indicates whether a

cone is present. There are differences of up to 150 m between these locations and those

reported in Table I taken from Donnelly et al. (1980). In particular, Foss's revised

location for Hole 418A is -110 m north of the published location.

For the purposes of relocation, Foss also reported that the cone at Hole 417C is

blocked by a short stub of drill string in the lower part of the cone. No drilling was done at

Hole 417C, and there should be no drill cuttings on or around the cone. The single-bit

holes should show a disturbance in the immediate area and a conical structure of drill

cuttings with crater on the top. Foss reports observing these structures with their high-

resolution Mesotech sonar system deployed below the drill string.

Transponders

Bottom transponders were deployed by three legs of the GLOMAR

CHALLENGER (DSDP Legs 51, 52, and 53), by the ATLANTIS H on Leg 97-2, and by

the SEDCO/BP 471 (ODP Leg 102).

On the ATLANTIS II cruise, G.M. Purdy (WHO1) deployed six transponders

weighted by concrete anchors and recovered the transponders at the end of the survey. The

anchors left behind may have sunk into the surface sediment or been covered by current

swept mud. The transponder locations were determined by integrating acoustic ranging

and satellite fixes. Table 19 lists the locations determined from the location map in Figure 3

of Purdy et al. (1980).



139

Table 18. Borehole locations from G. Foss (personal communication)

DRILL HOLE LOCATIONS

HOLEQ# LATITUDE LONGITUDE SEAFLOOR DEPTH
in meters

417 250 06.71' N 68" 02.57'W 5478.2 single-bit
417A 250 06.63' 680 02.48' 5478.2 single-bit
417B 25* 06.65' 680 02.78' 5489 single-bit
417C 250 06.56' 680 02.63' 5489 cone
417D 250 06.69' 680 02.82' 5489 cone

418 250 02.08'N 680 03.45'W 5519 single-bit
418A 250 02.16' 680 03.44' 5519 cone
418B 250 02.17'. 680 03.45' 5523 single-bit
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Table 19. Locations of WHOI transponder anchors. Latitude and
longitude picked from Figure 3 in Purdy et al. (1980).

PURDY TRANSPONDER NETWORK ANCHORS

250 07.95'N 680 01.23'W
250 06.98' 680 03.63'
250 04.79' 680 00.77'250 04.14' 680 04.70'

250 01.75' 680 02.03'
250 00.06' 680 05.50'
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At Site 417, five transponders were deployed on DSDP Leg 51 and 52. At Site

418, four transponders were deployed on DSDP Legs 52 and 53, and three transponders

were deployed on ODP Leg 102. The DSDP transponders, manufactured by ORE, are

enclosed in three-foot-long cylindrical pressure cases. DSDP rigged the transponders to

float 5 to 6 feet above the seafloor. Five to six glass ball "hard hats" were attached to the

top of the transponder. The ODP transponders, manufactured by DATASONICS, are in

white plastic cases 5 feet long and 10 inches in diameter. Glenn Floss reports that glass

ball flotation is inside the plastic casing. He does not report how far off the seafloor they

are tethered.

The location of the 13 drilling ship transponders is very poorly known. Our

primary source for transponder locations is a personal communication from Glenn Foss.

The original dynamic positioning data was not available or unrecorded. In recovering

locations from shipboard records, Foss found duplicate, contradictory locations for several

transponders. He provided fixes as range and bearing from boreholes. Thus, the total

uncertainty in transponder fix includes the error in hole location. Table 20 lists the

available data. Figures 50 and 51 show locations of boreholes (from Table 18) and the

locations of transponders using Foss's data (Table 20). The range between duplicate fixes

ranges up to 1600 feet at Site 417 and 750 feet at Site 418.

Drilling Gear

DSDP Leg 53 reported loss of a logging tool and 300 m of logging cable in Hole

418A. ODP Leg 102, however, was able to deploy logging gear to nearly the full depth of

penetration. The lost gear, then, must be on the seafloor in the immediate vicinity of Hole

418A. In addition, drilling crews discarded plastic core liners of various sizes during

drilling operations. Glenn Foss suggests that the seafloor around Sites 417D and 418A,

the two holes with the longest drilling history, are probably strewn with these liners.
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Table 20. Locations of DSDP and ODP transponders from G. Foss

(p ný hal communication).

DSDP & ODP TRANSPONDER LOCATIONS

Serial # Hole TLme D aring
deployed Relative to the Transponder

396 417 1810L 12/01176 100'
417A 650' SW
417B 530 WSW

375 417A 2347L 12/10176 near
417B 100' W
417C near
417D 1000' W
417D 40' N, 1060W

394 417D 0226L 01/15/77 near
374 417D 1045L 01/30/77 500'??
392 417D 2315L 02/09/77 500'??

383 418 0943L 02/10/77 near
418A near

395 418A 0502L 02/14177
386 418A 1648L 03/01/77 near
386 or 395 418A 400' S, 120' W not sure which beacon
386 418A 530' S,260' E with 0950 heading diff.
405 418A 2108L 04/02/77 700' E

418B 400' N

162 418A 1633L 03/21/85 over hole by ded. reck.
189 418A 2000L 03/21/85 4000' W

418A 225' N, 3309'W
418A 3915' 2730

185 418A 1735L 03/25/85 160' N, 330' E
418A 289' 0560



Figure 50. Location of DSDP and ODP transponders and cones at Site 417

from G. Foss (personal communication).
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Figure 51. Location of DSDP and ODP transponders and re-entry cones at

Site 418 from G. Foss (personal communication).
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PHYSICAL OCEANOGRAPHY

Sites 417 and 418 lie near the subtropical convergence between tradewinds to the

south and westerlies to the north. In terms of surface water circulation, the sites lie on the

southwestern edge of the subtropical gyre (Sargasso Sea). A great number of moored

current meter measurements and float tracks have been gathered just north of Sites 417/418

at 28"N since the 1970s as part of Mid Ocean Dynamics Experiment (MODE, 1978;

Schmitz, 1989). The mean flow, as determined by geostrophic computation and long-term

Eularian and Lagrangian observations, is a few cm/s easterly in the upper 2000 m and

southerly at deeper depths (Schmitz, 1976; Reid, 1978; Owens et al., 1988). Although this

site is within a region of the North Atlantic with low kinetic energy in upper-to-middle

water depths, significant variability in velocity occurs due to transit of eddies (Riser and

Rossby, 1983; Rossby et al., 1983).

Eddies are anticyclonic water motions with lateral scales of 10's to 100's of kms

and temporal scales of months to a year or so (MODE, 1978). Within eddies, current

velocity can reach 50 cm/s (McWilliams, et al., 1983). Eddies propagate at speeds of 2-4

km per day. The presence of an eddy can be recognized by vertical temperature structure.

Normally the 15"C isotherm occurs at 500-600 m depth in this region (MODE, 1978).

This isotherm rises to 300-400 m depth in the center of eddies.

There is considerably less data on deep water flow. Tucholke et al. (1973) took

sections of salinity and temperature across the Vema Gap. He found moderate westerly

flow of Antarctic Bottom Water near Sites 417/418. This is consistent with an isothermal

bottom boundary layer observed by Galson and Von Herzen (1981) and thought to be due,

in part, to horizontal advection and thickening processes (Armi and Millard, 1976; Armi

and D'Asaro, 1980).

The temperature and salinity characteristics at the site may be gleaned from atlases

of data collected in the 50's and 60's (Fuglister, 1960; Worthington and Wright, 1970;

Wright and Worthington, 1970). Worthington (1976) synthesized these data into a
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circulation model for the western North Atlantic. We have ordered temperature, salinity

and computed sound velocity data for this region from the National Ocean Data Center.

Figure 52 shows profiles of sound velocity in the upper 2500m from a Naval atlas.
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Figure 52a. Vertical profiles of sound velocity computed from temperature

a~nd salinity data in upper 2500 mn (Marsden square 79, one degree
square 45).
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Figure 52b. Profiles of velocitY of sound in water (Marsden square 79,

one degree square 46).
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